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Background

Localization and navigation technologies are vital components of modern society.
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Challenges
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Inhomogeneous magnetic field 

The magnetic field magnitude measured near 
the floor in Visionen

• Spatially varying 3D vector field
• Relatively stable (static)
• Fulfilling Maxwell’s equations.
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Magnetic field modeling 

Global modeling Local modeling
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Motivation

Snapshot #2

Snapshot #1

Image #1 Image #2

Visual images Magnetic-field images
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Basic Idea

Position

Magnetic field magnitude

INS

Correction

predicted measurement

𝑡𝑘

actual measurement

𝑡𝑘+1

learned model

Example: 1D navigation 

• 3 magnetometers
• Inertial navigation system
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Significance

• The magnetic field-aided inertial navigation system allows indoor 
localization and navigation using low-cost sensors.

• It could extend the exploration phase of SLAM (simultaneous localization 
and mapping) systems.

• It could be incorporated into the existing magnetic field SLAM systems to 
boost the SLAM systems’ usability.

• It could have other interesting applications: underwater navigation, 
medical robots, etc.
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PARTⅠ
Magneto-Inertial Sensor Calibration



Common Sensor Errors

• Sensor bias
• Scale factors
• Non-orthogonal sensitivity axes
• Random noise
• Frame Misalignment ……

Actual Magnetometer Data
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Magneto-Inertial Sensor Model

Orientation matrix

Angular velocity

Calibration parameters

Navigation 
Frame

x

y
z

𝛼
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Nonlinear Least Square Problem

acc. residual mag. residual

gyro. residual
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noise covariance



Practical Aspect

Calibration Requirements:
1. The sensor board must be rotated slowly to minimize acceleration.
2. The sensor system needs exposure to a wide range of orientations.

Data Collection:
• Duration: Approx. 5 minutes 
• Sampling rate: 100 Hz
• Total samples: 30,000

Challenges:
• Computationally heavy: Handling large datasets requires significant processing power.
• Memory intensive:  Large Jacobian matrices need extensive memory for storage.

Reason: The dimension of 𝑅0:𝑁−1 grows linearly with time.
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Solution: Downsampling

Accelerometer

Magnetometer

Gyroscope

Motivation

• 𝑅0:𝑁−1 are slowly varying due to slow motion/rotation.

Orientation matrices

Downsample rate: 10 ×
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Constructing New Residuals

Accelerometer

Magnetometer

Gyroscope

Downsample rate: 10 ×

Orientation matrices

acc. residual mag. residual gyro. residual
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Gyroscope Pre-integration & Residual

Gyroscope

Downsample rate: 10 ×

Orientation matrices

Given gyroscope measurements on time interval [𝑡𝑖 , 𝑡𝑗), the gyroscope pre-integration gives a probabilistic 

description of the orientation change, i.e.,

Pre-integration

𝑡𝑖 𝑡𝑗
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Gyroscope Pre-integration & Residual

Given gyroscope measurements on time interval [𝑡𝑖 , 𝑡𝑗), the gyroscope pre-integration gives a probabilistic 

description of the orientation change, i.e.,

Weighted Residual Norm Squared:
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Experiment Results



Real-World Experiment Setup

• Sampling rate: 500 Hz
• # of data points: 120k
• 30 magnetometers and one IMU
• Calibrate magnetometer-IMU pair one at a time
• Equivalent sampling rate: 5 Hz

outliers
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Magnetometer Calibration Result

Noise standard deviation 0.015𝜇T

• Calibration significantly reduces the variance across all magnetometers. 

The norm of 30 magnetometers’ measurements before and after calibration
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Conclusion

• The proposed method can significantly minimize the discrepancies 

in magnetic field measurements from the sensor array.

• It is computationally efficient and saves memory.
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PART Ⅱ
Magnetic Field-based Localization



The Magnetic Field-Aided Inertial
Navigation System (MAINS)

MAINS: A magnetic-field-aided inertial navigation system for indoor positioning.
Chuan Huang, Gustaf Hendeby, Hassen Fourati, Christophe Prieur, and Isaac Skog. 
IEEE Sensors Journal, 24(9):15156–15166, 2024.

A tightly-integrated magnetic-field aided inertial navigation system. 
Chuan Huang, Gustaf Hendeby, and Isaac Skog. 
In Proc. 2022 25th Int. Conf. on Information Fusion (FUSION), pages 1–8, 
Linköping, Sweden, July 2022. 



Overview

• Self-contained localization solution 

• Positioning with Inhomogeneous magnetic fields

• Magneto-Inertial sensor array

• A tightly-integrated magnetic field odometry-aided 

inertial navigation system

24



Magnetic Field Model

When there is no free current in the space and the electric field is static, 

Equation (1b) allows 𝑀 𝑟 to be the gradient of a scalar potential function 𝜙(𝑟), i.e., 

In this work,  the scalar potential function 𝜙(𝑟) is chosen to be a polynomial function. Hence, 
𝑀(𝑟) is referred to as the polynomial magnetic field model. 

𝑀(𝑟) : the magnetic field vector at location 𝑟.

Curl-free

Divergence-free
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Magnetic Field Model

• The magnetic field is expressed in the body frame.

• The origin of the model is aligned with the origin of the body frame.

• The location 𝑟 is expressed in the body frame. 

• Φ(𝑟) is a fixed matrix for any given magnetometer’s location.

• When the body frame moves, 𝜃 changes along with it. o

Φ ∙ : 3 × 𝜅 matrix      𝜃: 𝜅 × 1 vector
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Magnetic Field Model

• 2nd order model (15 dimensional) 

• 1st order model (8 dimensional) 
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State-Space Model

Position

Magnetic field strength

INS

Correction

predicted measurement

𝑡𝑘

actual measurement

𝑡𝑘+1

learned model

𝑟(𝑖): the 𝑖th magnetometer’s position (in the body frame)

Navigation equation

Sensor bias random walk model

Coefficient propagation model
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Experiment Results



Real-World Experiment Setup

• In total 8 datasets were collected.
• Length: 137 ~ 194 m.
• Duration: 151 s ~ 332 s.

parallel tilted
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Real-World Experiment Setup

• Three algorithms: a stand-alone INS, MAINS, and the magnetic field odometry[1] .
• Position aiding for the first 60 seconds.
• For MAINS, 1st order polynomial magnetic model was used with different sensor configurations.

[1] Zmitri, Makia, Hassen Fourati, and Christophe Prieur. "Magnetic field gradient-based EKF for velocity estimation in indoor navigation."

Sensors 20, no. 20 (2020): 5726.

The magnetic field odometry proposed in [1] Sensor configurations
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Real-World Experiment Results

1

[1] Zmitri, Makia, Hassen Fourati, and Christophe Prieur. "Magnetic field gradient-based EKF for velocity estimation in indoor navigation."

Sensors 20, no. 20 (2020): 5726.
32

Horizontal trajectory

Height



Real-World Experiment Results
Root Mean Square (RMS) Horizontal Error

• Method [1] and MAINS outperform the stand-alone INS significantly.
• With square configuration, MAINS has lower RMS error than method [1] (expect on NP-3).
• Increasing sensors used in MAINS does not necessarily lead to smaller horizontal RMS error. 

[1] Zmitri, Makia, Hassen Fourati, and Christophe Prieur. "Magnetic field gradient-based EKF for velocity estimation in indoor navigation."

Sensors 20, no. 20 (2020): 5726.
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Real-World Experiment Results
Root Mean Square (RMS) Vertical Error

• Method [1] and MAINS outperform the stand-alone INS significantly (except on NT-1).
• With square configuration, MAINS performs worse than the method [1] on datasets 

recorded at low altitude but better on datasets where the sensor board is tilted.
• Increasing sensors used in MAINS does lead to smaller vertical RMS error when operating at low altitude. 

[1] Zmitri, Makia, Hassen Fourati, and Christophe Prieur. "Magnetic field gradient-based EKF for velocity estimation in indoor navigation."

Sensors 20, no. 20 (2020): 5726.
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Conclusion

• A magnetic field-based indoor localization solution.

• Position drift reduction in INS significantly by 2 orders of magnitude.

• Good performance with flexible sensor configurations.

• Great possibility to be incorporated into magnetic field SLAM systems.
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The Observability-Constrained 
Magnetic Field-Aided Inertial

Navigation System (OC-MAINS)

An observability-constrained magnetic field-aided inertial navigation system.
Chuan Huang, Gustaf Hendeby, and Isaac Skog.
arXiv preprint arXiv:2406.02161. (Accepted to IPIN 2024)



Expected Behaviors

• Initially, the magnetic model have its center (origin) 

defined at some position.

• After correction, a new model is created, 

centered at the position estimate.

• The uncertainty in position will grow with time.

• The uncertainty in heading (yaw) should also grow 

when it comes to 3D localization.

learned model
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• The decreased perceived uncertainty in yaw is a strong indication that the estimate is inconsistent.

• The inconsistency is caused by false observability[1], resulting from linearization.

The inconsistency must be handled carefully!  

(Expected)

(MAINS)

Initial uncertainty

[1] Huang, G.P., Mourikis, A.I. and Roumeliotis, S.I. "A first-estimates Jacobian EKF for improving SLAM consistency." 
Experimental Robotics: The Eleventh International Symposium. Springer Berlin Heidelberg, 2009.

Inconsistent Yaw Uncertainty
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Observability-Constrained Extend Kalman 
Filter (OC-EKF)[1]

Step 1: Construct local observability matrix for nonlinear system (1).

Step 2: Find the unobservable subspace of the linearized system.

Step 3: Modify the Jacobian matrices used in a normal EKF.

Overview

[1] Hesch, J.A., Kottas, D.G., Bowman, S.L. and Roumeliotis, S.I., 2013. 

Consistency analysis and improvement of vision-aided inertial navigation. IEEE Transactions on Robotics, 30(1), pp.158-176. 39



Contribution

• Derive analytic expressions for 
unobservable subspace for the 
MAINS.

• Extend OC-EKF (in Step 3) so that 
the Jacobian matrices modifications 
are less in some situations.

• Evaluate the proposed method on 
simulated and real-world datasets.

(MAINS)

Initial uncertainty
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Application to the MAINS
Step 1: Construct local observability matrix

41



Application to the MAINS

Step 2: Find the unobservable subspace for the linearized system

Such that
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Application to the MAINS

Step 3 (Original): Modify the Jacobian matrices used in a normal EKF.

The modified Jacobians are obtained by solving the optimization problem as follows
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Application to the MAINS

Step 3 (Extension): Modify the Jacobian matrices used in a normal EKF.

The modified Jacobians are obtained by solving the optimization problem as follows
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Simulations and Experiment Results



Simulation Setup
Monte Carlo simulation
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Simulation Results

• More consistent uncertainty in yaw.
• Improved yaw accuracy. 
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• Both trajectories end at almost same place.



Real-World Experiment Setup
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Real-World Experiment Results

• More consistent uncertainty in yaw.
• Improved yaw accuracy. 
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• The drift in the x and y directions could be due 
to IMU biases that have not been fully estimated.



Conclusion

• The OC-EKF can be applied to the MAINS to improve consistency in 

perceived uncertainty in yaw.

• The RMSE of yaw in OC-MAINS is smaller.
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Concluding Remarks



Summary

• An efficient and easy-to-use IMU-magnetometer calibration method 

• A magnetic field-aided inertial navigation system

• An observability-constrained magnetic field-aided inertial navigation 
system
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Published & Accepted Papers

A tightly-integrated magnetic-field aided inertial navigation system. 

Chuan Huang, Gustaf Hendeby, and Isaac Skog. 

In Proc. 2022 25th Int. Conf. on Information Fusion (FUSION), pages 1–8, Linköping, 
Sweden, July 2022. 

MAINS: A magnetic-field-aided inertial navigation system for indoor positioning.

Chuan Huang, Gustaf Hendeby, Hassen Fourati, Christophe Prieur, and Isaac Skog. IEEE 
Sensors Journal, 24(9):15156–15166, 2024.

An observability-constrained magnetic field-aided inertial navigation system.

Chuan Huang, Gustaf Hendeby, and Isaac Skog.

arXiv preprint arXiv:2406.02161. (Accepted to IPIN 2024)
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Thank you!

On Indoor Localization Using Magnetic Field-Aided
Inertial Navigation Systems

chuan.huang@liu.se
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