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Abstract

Localization and navigation technologies have become integral to modern soci-
ety, playing crucial roles in daily life. They enable efficient and safe travel, allow
emergency services to reach and assist individuals quickly, and are indispensable
components of autonomous systems. Indoor localization technology, aimed at
enabling precise location determination in indoor environments, has garnered
significant research interest. One intriguing research direction is magnetic field-
based localization technology, which exploits spatial variations in indoor mag-
netic fields to provide position information.

This thesis investigates how indoor magnetic fields can be used for localiza-
tion and develops a magnetic field-aided localization system that does not rely
on any preinstalled infrastructures, such as electric coils, or external localization
information. To achieve this, a sensor platform consisting of a planar magnetome-
ter array and an inertial measurement unit (IMU) was built. The array captures
the spatial variations of the magnetic field, from which odometry information can
be inferred. This odometry information is then used to aid an inertial navigation
system (INS) constructed around the IMU on the array.

The thesis addresses three key challenges faced when realizing a magnetic
field-based INS using the developed sensor platform. The first challenge is the
calibration of the sensors to ensure their measurements are accurate enough for
the localization system. The second challenge is to create a magnetic field model
that can be used to realize a magnetic field-aided INS. The final challenge is to
design a state estimation algorithm that provides consistent estimates so that the
perceived uncertainties match the true estimation errors as closely as possible.

To address the first challenge, an easy-to-use and efficient calibration method
is proposed to correct the misalignment of the IMU’s and magnetometer’s sen-
sitivity axes, sensor biases, and scale factors. The second challenge is met by
proposing a polynomial magnetic field model to construct a local small-scale
magnetic field map and a tightly integrated magnetic field-aided INS. The pro-
posed system was evaluated on simulation and real-world datasets, demonstrat-
ing a significant reduction in position drift compared to a stand-alone INS and
showing performance comparable to state-of-the-art magnetic field odometry. Ad-
ditionally, the system offers flexibility in sensor configurations, including sen-
sor placement and the number of sensors involved. Finally, an observability-
constrained magnetic field-aided INS is proposed to address the inconsistencies
identified in the developed magnetic field-aided INS. This new system maintains
the yaw angle unobservable, and demonstrates improved performance and con-
sistency compared to the initial system.

The results show that the proposed magnetic field-aided INS can be realized
by low-cost sensors and appropriate signal-processing algorithms. It could be
integrated into magnetic field simultaneous localization and mapping (SLAM)
systems to extend their exploration phase. Most importantly, it showcases the
possibility of building self-contained, accurate, and consistent indoor localization
systems with magnetic fields.
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Populärvetenskaplig sammanfattning

I en värld där tekniken ständigt utvecklas, är exakt lokalisering och navigering
avgörande för många av dem system som vi idag tar som självskrivna. Dessa
tekniker är hjärtat i system som autonoma fordon, drönare och personliga na-
vigationsenheter. Från att ha använt jordens övergripande magnetfält och enkla
magnetiska kompasser för att hitta rätt, använder vi nu avancerade sensorer och
signalbehandlingstekniker för att utnyttja lokala variationer i jordens magnetfält
för lokalisering och navigering.

Denna avhandling tar sig an tre utmaningar kopplade till inomhus lokalise-
ring och navigering med hjälp av variationer i jordens magnetfält. Först under-
söks hur man kan modellera det magnetiska fältet för att skapa ett magnetfälts
stöttat tröghetsnavigeringssystem. Sedan undersöks hur informations fusionen
i det stöttade tröghetsnavigeringssystemet ska designas för att osäkerheten måt-
ten som produceras från navigeringssystemet ska vara konsistenta med storleken
hos det faktiska felet. Detta är mycket viktigt om beslut ska fattas utifrån navi-
geringslösningen, så som styrandet av autonoma systems. Slutligen undersöks en
metod för att kalibrerasensorerna i systemet. Detta är nödvändigt för att kunna
bygga magnetfälts stöttat tröghetsnavigeringssystem med hjälp av lågkostnads
sensorer och skapa för kommersiellt bruk.

Sammanfattningsvis så bidrar den presenterade forskningen till utvecklingen
av viktiga förmågor och insikter som behövs nästa generations inomhusnavige-
ringssystem. En typ av navigeringssystems som kan revolutionera hur vi intera-
gerar med vår omvärld och möjliggöra nya typer av robotar och autonoma system.
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1
Introduction

1.1 Background and Motivation

Navigation and localization are important techniques in both civilian and mili-
tary applications. For example, when one opens Google Maps to find the route
to a booked hotel, the software first tries to locate the user’s current position and
then provides navigation information. Another example is when submarines are
cruising in deep water, they rely on accurate navigation and localization tech-
niques to navigate safely and reach their destinations.

Despite the significant advancements in navigation and localization technol-
ogy, many challenges remain. Take one of the most widely used localization and
navigation systems, the global positioning system (GPS) as an example. First,
the environment in which GPS operates is increasingly complex. Tall buildings
and narrow streets can obstruct GPS signals, leading to inaccurate localization
results. Second, indoor, underwater, and underground environments may ren-
der GPS useless since the signals are typically weak or unavailable. Third, the
GPS signal can be easily jammed or spoofed, which poses a security risk to the
navigation system.

The thesis focuses on developing robust and high-performing magnetic field-
based localization techniques to complement GPS for indoor environments. The
indoor magnetic field offers several appealing properties, making it a strong can-
didate for localization. First, because the magnetic field obeys Maxwell’s equa-
tions, it can be easily modeled using well-established physical principles. Sec-
ond, the magnetic field is generally stable, as it comprises the Earth’s relatively
constant magnetic field and disturbances from ferromagnetic materials and man-
made sources, such as current-carrying coils. These disturbances are often static
or weak enough to be negligible. Third, unlike visual-based localization tech-
niques that rely on image capture, sensing the indoor magnetic field does not

3



4 1 Introduction

Figure 1.1: The sensor board used in the thesis. It has 30 PNI RM3100 mag-
netometers and an Osmium MIMU 4844 IMU mounted on the bottom side.

compromise privacy. Lastly, the variations in indoor magnetic fields are rich
enough to provide useful position information, making magnetic field-based lo-
calization techniques well-suited for indoor applications.

Inspired by visual odometry techniques, which sense the environment through
thousands of pixels, the magnetic field environment can be recorded similarly. To
achieve this, a magnetometer planar array consisting of 30 magnetometers and
one IMU, see in Figure 1.1, was built to capture the spatially varying magnetic
field. The localization system based on the array is designed to be self-contained
and is expected to outperform a stand-alone INS. Additionally, this system has
the potential to be integrated into existing magnetic field-based SLAM systems,
enhancing their robustness and usability.

1.2 Research Questions

There are several research questions relating to magnetic field-based localization
given the magnetic sensor arrays, such as the one in Figure 1.1. Foremost among
these is how indoor magnetic fields can be effectively leveraged to enhance lo-
calization accuracy and support advanced system requirements. Addressing this
pivotal inquiry entails exploring the following sub-questions.

To begin with, sensor calibration is a prerequisite for high-performing multi-
sensor systems, such as the magnetic field-aided INS. The system relies on several
low-cost sensors. They generally have reduced precision due to sensor biases and
scaling factors. Furthermore, there is a certain degree of misalignment between
the axes of the magnetometers and the IMU. To account for these imperfections,
calibration of these sensor errors is necessary to maintain a good system perfor-
mance. One should also consider calibration speed for commercial applications,
given the necessity to calibrate thousands of products. Which calibration method
can be accurate and efficient?
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Next, given that the sensors are calibrated to the desired accuracy, how can the
magnetometer array measurements be used to aid the INS? One way is to model
magnetic fields using prior physics knowledge. The model can then be fitted to
the measurements and predict nearby magnetic fields. Then the question boils
down to what model is suitable for modeling the magnetic field and how the
model can be integrated into INS thereby reducing inherent positional drift.

Lastly, localization systems are often part of large systems, such as advanced
driver-assistance systems, missile guidance systems, etc. For these types of sys-
tems, not only accurate localization results are needed, but also consistent un-
certainties, since they affect high-level decision-making, The question of main-
taining consistent uncertainty estimates in the magnetic field-aided INS will be
investigated.

1.3 Contributions

The key contributions of the thesis are as follows:

1. An efficient sensor calibration method for sensor arrays consisting of multi-
ple magnetometers and an IMU was proposed. It allows the measurements
from these low-cost sensors to be processed by the algorithm used in the
proposed magnetic field-aided INS.

2. A magnetic field-aided INS was developed and realized with a magnetome-
ter array and one IMU. The system has such small localization errors that
it opens up the possibility of building magnetic field SLAM systems using
the presented system.

3. An observability-constrained magnetic field-aided INS was proposed to solve
the original system’s inconsistent perceived uncertainty in yaw. Compared
to the original system the perceived uncertainty in yaw reported by the
new system is more consistent with the true estimates error. The consistent
perceived uncertainty is crucial if the observability-constrained magnetic
field-aided INS is to be incorporated into larger localization or control sys-
tems.

1.4 Publications

A: A Tightly-Integrated Magnetic-Field aided Inertial Navigation System.

Chuan Huang, Gustaf Hendeby, and Isaac Skog. A tightly-integrated
magnetic-field aided inertial navigation system. In Proc. 2022 25th
Int. Conf. on Information Fusion (FUSION), pages 1–8, Linköping,
Sweden, July 2022. doi: 10.23919/FUSION49751.2022.9841304.

In paper A, a tightly integrated magnetic field-aided inertial navigation system
is presented. The system uses a magnetometer sensor array to measure spatial
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variations in the local magnetic field. The variations in the field are — via a recur-
sively updated polynomial magnetic-field model — mapped into displacement
and orientation changes of the array, which in turn are used to aid the inertial
navigation system. Simulation results show that the resulting navigation system
has three orders of magnitude lower position error at the end of a 40-second tra-
jectory as compared to a standalone inertial navigation system.

In paper A, Isaac Skog and Gustaf Hendeby had the research idea and pro-
vided help with improving the manuscript. Chuan Huang implemented the idea,
carried out the simulation experiments, and wrote the paper.

B: MAINS: A Magnetic-Field-Aided Inertial Navigation System for Indoor Po-
sitioning.

Chuan Huang, Gustaf Hendeby, Hassen Fourati, Christophe Prieur,
and Isaac Skog. MAINS: A magnetic-field-aided inertial navigation
system for indoor positioning. IEEE Sensors Journal, 24(9):15156–
15166, 2024. doi: 10.1109/JSEN.2024.3379932.

In paper B, the proposed method in paper A was evaluated on real-world datasets
for the first time. Experiments show that the magnetic field-aided INS signifi-
cantly outperforms the stand-alone INS, demonstrating a remarkable two orders
of magnitude reduction in position error. Furthermore, when compared to the
state-of-the-art magnetic field-aided navigation approach, the proposed method
exhibits slightly improved horizontal position accuracy. The experimental results
show that the position error after 2 minutes of navigation in most cases is less
than 3 meters when using an array of 30 magnetometers. Thus, the proposed
navigation solution has the potential to solve one of the key challenges faced by
the current magnetic-field SLAM solutions — the very limited allowable length
of the exploration phase during which unvisited areas are mapped.

In paper B, Isaac Skog and Gustaf Hendeby helped collect data and improved
the manuscript and filter tuning. Hassen Fourati and Christophe Prieur pro-
vided the code of the algorithm used for comparison and helped improve the
manuscript. Chuan Huang participated in the data collection, conducted experi-
ments, and wrote the paper.

C: An Observability-Constrained Magnetic Field-Aided Inertial Navigation
System.

Chuan Huang, Gustaf Hendeby, and Isaac Skog. An observability-
constrained magnetic field-aided inertial navigation system — extended
version. arXiv preprint arXiv:2406.02161, abs/2406.02161, 2024. (Ac-
cepted to IPIN 2024)

In paper C, the inconsistent perceived yaw uncertainty in the magnetic field-
aided INS was identified, and a method to construct an observability-constrained
magnetic field-aided INS is proposed. The proposed method builds upon the
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previously proposed observability-constrained extended Kalman filter and ex-
tends it to work with a magnetic field-based odometry-aided INS. The proposed
method is evaluated using simulation and real-world data, showing that (i) the
system observability properties are preserved, (ii) the estimation accuracy in-
creases, and (iii) the perceived uncertainty calculated by the EKF is more con-
sistent with the true uncertainty of the filter estimates.

In paper C, Isaac Skog and Gustaf Hendeby helped with problem formulation,
provided research discussion, and improved the manuscript. Chuan Huang had
the idea, implemented it, and wrote the paper.

1.5 Thesis Outline

This thesis consists of two parts. Part I contains the background material of the
applications presented in Part II.

Part I discusses the motivation behind the magnetic field-based localization
technology and provides relevant background knowledge, including coordinate
frame definitions, sensor models, optimization, and state estimation.

Part II presents the magnetic field-aided INS and its variant, the observability-
constrained magnetic field-aided INS, along with the sensor calibration required
to ensure optimal performance. Chapter 3 is about calibrating the magnetometer
array used in developing the magnetic field-aided INS. Chapter 4 presents the
proposed magnetic field-aided INS and its performance. Chapter 5 introduces
its variant, the observability-constrained magnetic field-aided INS, and compares
its performance with that of the magnetic field-aided INS. Finally, Chapter 6 con-
cludes the thesis and gives possible directions for future work.





2
Background

This chapter offers essential background knowledge for understanding the meth-
ods developed in the thesis. Additionally, the notations introduced here will be
used in subsequent chapters.

2.1 Coordinate Frames

To present the localization problem clearly, it is important to define the coordi-
nate frames to express the physical quantities properly.

First, the body frame (b-frame) is an orthogonal coordinate frame that is
aligned with the roll, pitch, and yaw axes of the vehicle (sensor board). Sec-
ond, the navigation frame (n-frame) is a local geographic frame with its origin
attached to a fixed point on Earth. Note the Earth’s rotation rate is approximately
7.29 · 10−5 rad/s [4] and its effects cannot be observed by the low-cost sensors
used in this work, so it is neglected. Therefore, the navigation frame and iner-
tial frame are also approximated to be the same. The relation of the coordinate
frames can be seen in Figure 2.1.

2.2 Orientation Representations

The relative rotation between different coordinate frames can be defined by one
of the four common representations: the orientation matrix, the rotation vector,
Euler angles, and the unit quaternion. In the following definitions, all coordinate
frames share the same origin, i.e., the relative translation is pre-compensated.

9
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b-frame

x (roll)

y (pitch)

z (yaw)

n-frame y

z

x

Figure 2.1: The relation of the body frame and navigation frame. The body
frame’s origin is attached to a fixed point on the sensor board and moves
along with it, while the navigation frame remains static, with its origin fixed
at a point on Earth.

2.2.1 Orientation Matrix

The orientation matrix is a 3 × 3 matrix whose columns contain the coordinates
of the unit vectors of the rotated frame in the reference frame. For example, if
the reference frame is the n-frame and the rotated frame is the b-frame, then the
orientation matrix of the b-frame is denoted by Rn

b and its columns are the unit
vectors of the b-frame’s x-axis, y-axis, and z-axis expressed in the n-frame. There-
fore, Rn

b can also be used to transform the coordinates of a vector from the b-frame
to the n-frame, i.e., xn = Rn

bx
b, where x ∈ R3 and the superscript indicates the

coordinate frame in which the vector is expressed. Further, all orientation matri-
ces in 3-D space make up the special orthogonal group SO(3) � {R ∈ R3×3|R�R =
I ,det(R) = 1}.

2.2.2 Rotation Vector

The rotation vector is a three-dimensional vector representing both the direction
and magnitude of the rotation. Its direction corresponds to the axis of rotation,
while its magnitude represents the angle by which the reference frame must ro-
tate to align with the rotated frame, see Figure 2.2.

2.2.3 Euler Angles

The Euler angles representation is a triplet whose elements are the angles by
which the reference frame needs to rotate around each of its three axes consecu-
tively to align with the rotated frame. A common choice to execute the rotations
is to rotate around the z-axis, followed by the y-axis and x-axis, see Figure 2.3.
One drawback of this representation is that gimbal lock issues exist, i.e., when
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two of the three axes of rotation of a 3-D object align, the rotations cannot be
executed independently, resulting in a loss of one degree of freedom.

2.2.4 Unit Quaternion

The unit quaternion is a four-element unit-norm vector for representing orienta-
tions. Compared to the Euler angles representation, it does not have the gimbal
lock issue [5]. An overview of quaternions can be found in [6]. Below are some
fundamental concepts that are essential for developing this thesis.

A quaternion can be conveniently denoted by q � [qw q�v ]�, where qw is a
scalar, known as the real part, and qv = [qx qy qz]� is a 3-dimensional vector,
known as the imaginary part. The unit quaternions encode rotation vectors and
the conversion is straightforward. Note that a unit-norm quaternion q can always
be written as

q =
[

cos(θ2 )
sin(θ2 )v̆

]
, (2.1)

where θ is a scalar and v̆ ∈ R3 is a unit-norm vector, and the corresponding
rotation vector is θv̆. Thus, the identity quaternion, denoted by qI = [1 0 0 0]�,
represents no rotation.

Quaternion conjugation is defined as

conj(q) � conj
([
qw
qv

])
=
[
qw
−qv

]
. (2.2)

The conjugated unit quaternion represents an opposite rotation as q represents,
which can be seen by negating θ in (2.1).

The quaternion product of two unit quaternions q1 and q2 is defined as

q1 ⊗ q2 =
[

q1
wq

2
w − (q1

v)�q2
v

q1
wq

2
v + q2

wq
1
v + q1

v × q2
v

]
, (2.3)

where × denotes the vector cross product. The product implies composite rota-
tions: the rotation represented by q2 followed by that represented by q1.

All unit quaternions constitute the hypersphere S3 = {q | q ∈ R4, ‖q‖ = 1}. All
pure quaternions, i.e., the ones whose real part is 0, constitute a set

Hp = {q | qw = 0}. (2.4)

2.3 Smooth Manifolds

This section provides a brief introduction to smooth manifolds, covering the es-
sential knowledge needed to understand optimization on manifolds. This under-
standing is crucial for the developed sensor calibration method. For more details
on smooth manifolds, interested readers may refer to [7, 8].
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v

x
x′

ϕ

Figure 2.2: The rotation vector v. It has a length φ and its direction is the
rotation direction. The vector x rotates around the vector v by φ degrees to
x′ .

x

y

z(z′)

ψ

x′
y′

x′
y′(y′′)

z′

θ

x′′

z′′

x′′(x′′′)
y′′

z′′

ϕy′′′

z′′′

Figure 2.3: The Euler angles (ψ, θ, φ) following the z-y′-x′′ convention. The
original coordinate frame (black) rotates around its z-axis, y′-axis, and x′′-
axis sequentially to arrive at the final rotated coordinate frame (red).

Roughly speaking, a smooth manifold M, in most cases, can be imagined as
a smooth surface with curvature, e.g., a 3-dimensional sphere as shown in Ex-
ample 2.1. For each point x ∈ M, the neighborhood of x resembles a Euclidean
space. There exists a tangent space at x ∈ M, denoted by TxM. The tangent space
is a Euclidean space, and its dimension coincides with the dimension of the man-
ifold, i.e., dim(M) = dim(TxM). For the manifolds discussed in the thesis, each
one forms a group under certain binary operations [7]. For the identity element
denoted by I in the group, the vectors in the tangent space TIM can be mapped
to the manifold M via the exponential map exp and mapped back via the loga-
rithm map log; these two maps will be defined later. Furthermore, the increment
to an element and the difference between elements inM can be represented by a
vector in Rdim(M), thanks to the two operators oplus and ominus to be defined for
each type of smooth manifolds. With these two operators, defining derivatives
properly for the manifoldM is convenient.

Example 2.1
The 3-dimensional sphere S2 = {x | x ∈ R3, ‖x‖ = 1} is a smooth manifold, see
Figure 2.4. The tangent space at x is a tangent plane TxS2 = {v | x�v = 0, v ∈ R3}.
The dimension of the manifold is 2.
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S2

TxS
2

x

Figure 2.4: The manifold S2 and its tangent space. The manifold S2 is a
sphere in 3-dimensional space, and its tangent space TxS2, a subspace of R3,
contains all vectors that are perpendicular to x. TxS2 can be viewed as the
tangent plane to the sphere passing through x, therefore, the dimension of
S2 and TxS2 are both 2.

2.3.1 Vector Manifold

The n-dimensional vector space Rn is a trivial manifold. The tangent space at
x ∈ Rn is Rn itself. The exponential map exp and the logarithmic map log are
identity maps. Further, the operators oplus and ominus correspond to the normal
addition and subtraction, respectively. That is, for x, y, v ∈ Rn,

⊕ : Rn × Rn → Rn; x ⊕ v = x + v, (2.5a)

� : Rn × Rn → Rn; x � y = x − y. (2.5b)

2.3.2 Orientaiton Matrix Manifold

The special orthogonal group SO(3) is a 3-dimensional smooth manifold with a
tangent space associated with each element in the group [8]. Specifically, for the
tangent space associated with the identity matrix I , also known as so(3), there
are linear maps ∧ and ∨ which map from R3 to so(3) and vice versa. They are
defined as [7]

∧ : R3 → so(3); ω → [ω]∧ =


ω1
ω2
ω3



∧

=


0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 , (2.6a)

∨ : so(3)→ R3; [ω]∧ →
[
[ω]∧

]∨
=


0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0



∨

=


ω1
ω2
ω3

 . (2.6b)

The element in so(3) and SO(3) can be mapped to each other via the exp and log
mappings as follows [7]
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expR : so(3)→ SO(3);

[ω]∧ → expR([ω]∧) =


I + sin(‖ω‖)

‖ω‖ [ω]∧ + 1−cos(‖ω‖)
‖ω‖2 ([ω]∧)2, if ‖ω‖ � 0

I , otherwise

(2.7a)

logR : SO(3)→ so(3);

R → logR(R) =


ϕ · (R−R�)

2sin(ϕ) with ϕ = cos−1
( tr(R)−1

2

)
, if sin(ϕ) � 0

[0 0 0]�, otherwise

(2.7b)

Here ‖ · ‖ denotes the norm of a vector and tr( · ) denotes the trace of a matrix.
The capitalized exponential and logarithmic map can be defined to map vec-

tors from R3 to group elements SO(3) and in the reverse direction. That is,

ExpR : R3 → SO(3); ω → expR([ω]∧), (2.8a)

LogR : SO(3)→ R3; R → [logR(R)]∨. (2.8b)

Due to the non-commutativity of matrix multiplication, there are two possible
ways to define the oplus and ominus operators. One way is to define them as

⊕ : SO(3) × R3 → SO(3); R ⊕ v = R · ExpR(v), (2.9a)

� : SO(3) × SO(3)→ R3; R � S = LogR(S−1 ·R), (2.9b)

for elements R, S ∈ SO(3) and elements v ∈ R3. Another way is to define them as

⊕ : SO(3) × R3 → SO(3); R ⊕ v = ExpR(v) ·R, (2.10a)

� : SO(3) × SO(3)→ R3; R � S = LogR(R · S−1), (2.10b)

for elements R, S ∈ SO(3) and elements v ∈ R3.

2.3.3 Unit Quaternion Manifold

The unit quaternion manifold is a 3-dimensional manifold. For the tangent space
associated with the identity quaternion qI , there are linear maps ∧ and ∨ which
map from R3 to Hp and vice versa through [7]

∧ : R3 → Hp ; ω → [ω]∧ =


ω1
ω2
ω3



∧

=



0
ω1
2ω2
2ω3
2


, (2.11a)

∨ : Hp → R3; [ω]∧ →
[
[ω]∧

]∨
=



0
ω1
2ω2
2ω3
2



∨

=


ω1
ω2
ω3

 . (2.11b)
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The element in Hp and S3 can be mapped to each other via mappings expq and
logq [7],

expq : Hp → S3;

[ω]∧ → expq([ω]∧) =




cos(‖ω2 ‖)
ω
‖ω‖sin(‖ω2 ‖)

 , if ‖ω‖ � 0

[1 0 0 0]�, otherwise

(2.12a)

logq : S3 → Hp ;

q → logq

([
qw
qv

])
=




0

qv
‖qv‖

θ

 with θ = arctan2(‖qv‖, qw), if ‖qv‖ � 0

[0 0 0 0]�, otherwise

(2.12b)

Here the function arctan2(y, x) returns the angle θ between the positive x-axis
and the point (x, y), taking into account the signs of both arguments to determine
the correct quadrant.

The capitalized exponential and logarithmic map can be defined to map vec-
tors from R3 to group elements S3 and in the reverse direction,

Expq : R3 → S3 ; ω → expq([ω]∧), (2.13a)

Logq : S3 → R3 ; q → [logq(q)]∨. (2.13b)

For the same reason as in the orientation matrix manifold, there are also two
ways to define ⊕ and �. For simplicity, here provides one of them, i.e.,

⊕ : S3 × R3 → S3; q ⊕ v = q ⊗ Expq(v), (2.14a)

� : S3 × S3 → R3; q � p = Logq(conj(q) ⊗ p), (2.14b)

for elements q, p ∈ S3 and elements v ∈ R3.

2.3.4 Product Smooth Manifolds

Product smooth manifolds, abbreviated as product manifolds, are Cartesian prod-
ucts of smooth manifolds. LetM = M1 ×M2 · · ·MM be a product manifold. Its
dimension is the sum of the component manifolds’ dimension. The tangent space
TxM at x ∈ M is the Cartesian product of the tangent space of the component
manifolds, therefore, the vectors in the tangent space can be uniquely identified
by δx ∈ Rdim(M1) × Rdim(M2) · · ·Rdim(MM ). Furthermore, ⊕ and � can be defined
for product manifolds by viewing them as applying operators oplus and ominus
already defined on each component manifold and concatenating the results.

In localization and navigation applications, the state space is often a product
manifold, e.g., the Cartesian product of several vector manifolds and quaternion
manifolds. Example 2.2 shows such manifold.
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Example 2.2
Consider the dead-reckoning application. The state vector xk can be written as

xk =


pk
vk
qk

 , (2.15)

where pk ∈ R3, vk ∈ R3, and qk ∈ S3 denote the position, velocity, and orientation,
respectively.

The state space is a smooth manifold embedded in R10. However, the mani-
fold is only 9-dimensional because it is a product manifoldM = R3 × R3 × S3.

The operator ⊕ :M× R3 × R3 × R3 →M is defined as

xk ⊕ δxk =


pk + δpk
vk + δvk

qk ⊗ Expq(δqk)

 , (2.16)

and the operator � :M×M→ R3 × R3 × R3 is defined as

x′k � xk =


p′k − pk
v′k − vk

Logq(conj(q′k) ⊗ qk)

 . (2.17)

Here δxk = [δp�k δv�k δq�k ]� and x′k = [p′�k v′�k q′�k ]�.

2.3.5 Derivatives on Manifolds

For function f :M→ N , whereM and N are smooth manifolds, the directional
derivative ∇ei f (x) can be defined as

∇ei f (x) � lim
h→0

f (x ⊕ hei ) � f (x)
h

, (2.18)

where ei is the i-th vector of the natural basis of Rdim(M), ⊕ is the oplus operator
defined on M, and � is the ominus operator defined on N . Furthermore, the
Jacobian matrix J(x) ∈ Rdim(M)×dim(N ), i.e., the derivative of f with respect to
(w.r.t.) x, is defined as

J(x) =
∂f (x)
∂x

� [∇e1
f (x) ∇e2

f (x) · · · ∇edim(M)
f (x)]. (2.19)

It should be noted that the derivative depends on the chosen ⊕ and � operators.
Example 2.3 shows how derivative w.r.t. the elements in SO(3) can be computed
using one possible choice of operators.
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Example 2.3
Consider the function f : SO(3) → R3; f (R) = Rp, where R ∈ SO(3) and p ∈ R3.
Using the definition of ⊕ in (2.9a) and � in (2.5b), the directional derivative can
be computed as

∇ei f (R) = lim
h→0

f (R ⊕ hei ) � f (R)
h

= lim
h→0

(R · ExpR(hei ) − R) p
h

= lim
h→0

R (I + [hei ]∧ − I ) p
h

= lim
h→0

Rh[ei ]∧p
h

= lim
h→0

−Rh[p]∧ei
h

= −R[p]∧ei ,

(2.20)

where the properties ExpR(v) ≈ I + [v]∧,∀v ∈ R3 and [a]∧b = −[b]∧a,∀a, b ∈ R3

are used. Therefore,

J(x) =
∂f (R)
∂R

=
[
−R[p]∧e1 − R[p]∧e2 − R[p]∧e3

]

= −R[p]∧
[
e1 e2 e3

]
= −R[p]∧ ∈ R3×3.

(2.21)

2.4 Sensors

The sensors used in this thesis are an IMU and magnetometers, see Figure 1.1.
Inertial sensors are used to measure an object’s acceleration and angular velocity,
which are integrated to estimate the position and orientation of the object. The
magnetometers are used to measure the magnetic field, which is used to correct
the drift in the estimated position and orientation.

In this section, a generic sensor measurement model is introduced, followed
by specific models for various sensor types.

2.4.1 Generic Sensor Measurement Model

For an ideal sensor that outputs 3-dimensional measurements, its measurements
relate to the sensor’s states and inputs as

y = h(x, u), (2.22)

where y ∈ R3 denotes the ideal sensor measurement, x denotes the sensor’s state,
u denotes the input, and h( · , · ) denotes the measurement function that depends
on specific types of sensors. Due to manufacturing imperfections and the stochas-
tic nature of the measurement, there will always be a deviation between the ac-
tual sensor measurement and the ideal measurement. To capture such deviation,
a stochastic linear measurement model

ỹ = h̃(x, u; θ) + e = Dy + o + e, (2.23)
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can be used for all types of sensors mentioned. Here, ỹ ∈ R3 denotes the actual
sensor measurement. In addition, θ = {D, o} denotes the calibration parameters,
where D ∈ R3×3 and o ∈ R3 denote the distortion matrix and the bias, respec-
tively. Further, e ∈ R3 denotes the measurement noise, which is assumed to be
Gaussian distributed with zero mean and covariance matrix Σe.

2.4.2 Gyroscope

The physical quantity measured by a gyroscope is the angular velocity of the
body frame w.r.t. the navigation frame, expressed in the body frame. Implicitly,
the angular velocity ωb can be defined such that

dRn
b

dt
= Rn

b[ωb]∧. (2.24)

Therefore, the ideal measurement is written as

ω = h(x, u) = ωb, (2.25)

where x = Rn
b, u = ωb. Using (2.23), the measurement model for a gyroscope is

ω̃ = h̃(x, u; θω) + eω = Dωωb + oω + eω, (2.26)

where the superscript ω on D, o, and e distinguishes these quantities from those
associated with other sensor types.

For the gyroscope used in the thesis, the distortion effect is negligible. There-
fore, Dω is assumed to be the identity matrix.

2.4.3 Accelerometer

The physical quantity measured by an accelerometer is the ‘specific force’, the
difference between the acceleration w.r.t. the n-frame and the acceleration due
to gravity, expressed in the body frame. The specific force, denoted by sb, can be
described as

sb = Rn
b
�(an − gn), (2.27)

where an ∈ R3 denotes the acceleration w.r.t. the n-frame expressed in the n-
frame, and gn ∈ R3 denotes the acceleration due to gravity, which is assumed to
be known. Therefore, the ideal measurement is written as

s = h(x, u) = Rn
b
�(an − gn), (2.28)

where x = Rn
b, u = an. Using (2.23), the measurement model for an accelerometer

is
s̃ = h̃(x, u; θa) + ea = DaRn

b
�(an − gn) + oa + ea. (2.29)

For the same reason as in the gyroscope, Da is assumed to be the identity
matrix.
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2.4.4 Magnetometer

The ideal measurement of a magnetometer is the ambient magnetic field in the
body frame, which can be expressed as

m = h(x, u) = Rn
b
�mn, (2.30)

where x = Rn
b, u = 0, and mn ∈ R3 denotes the magnetic field in the n-frame.

Using (2.23), the measurement model for a magnetometer is

m̃ = h̃(x, u; θm) + em = DmRn
b
�mn + om + em. (2.31)

2.5 IMU Pre-integration

IMU pre-integration is a technique that combines IMU measurements received in
a time interval into a probabilistic description of the pose change in that interval.
It suits particularly well in situations where the measurements from low-rate
sensors, e.g., cameras, need to be fused with those from an IMU, and when jointly
calibrating an IMU and other types of sensors, e.g., magnetometers, that provide
direction measurements.

2.5.1 Modeling Uncertainty and Useful Approximations in SO(3)

In terms of modeling uncertainty in SO(3), it is natural to consider the stochastic
model

R̃ = R ExpR(ε), ε ∼ N (0,Σ), (2.32)

where R̃, R ∈ SO(3) denote the random variable and the deterministic value, re-
spectively. Furthermore, ε ∈ R3 denotes Gaussian noise with zero mean and
covariance matrix Σ ∈ R3×3. For small covariances, the distribution of R̃ can be
approximated as [9]

p(R̃) =
1√

(2π)3det(Σ)
e−

1
2 ‖LogR(R−1R̃)‖2Σ , (2.33)

where det(Σ) denotes the determinant of the matrix Σ, and ‖x‖2Σ = x�Σ−1x for
x ∈ R3.

Two useful approximations are [10]

ExpR(τ + δτ) ≈ ExpR(τ)ExpR(J r (τ)δτ), (2.34)

LogR(ExpR(τ)ExpR(δτ)) ≈ τ + J−r (τ)δτ (2.35)

Here, τ, δτ ∈ R3, and ‖δτ‖ � ‖τ‖. Furthermore, J r ( · ), J−r ( · ) ∈ R3×3 denote the
right Jacobian of SO(3) and its inverse, respectively, which can be found in [11,
p. 40].
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time : t

sample : k

ti

i i + 1
tj

j∆T

Gyroscope: × × × × × × ×

Pre-integrated
Gyroscope:

Figure 2.5: Equal-interval sampling scheme. The ith gyroscope sample is
sampled at ti on the time axis. The gyroscope pre-integration combines the
samples from ti to tj into one single measurements.

2.5.2 Pre-integrated Gyroscope Measurements

Consider the equal-interval sampling scheme with sampling interval ∆T as illus-
trated in Figure 2.5. The goal of gyroscope pre-integration is to derive a prob-
abilistic model for the orientation change, denoted by ∆Rij , between the time
instance ti and tj , given the gyroscope measurements. To that end, the orien-
tation matrices at two consecutive samples are related via the kinematic model
(2.24), and the orientation change between several samples is derived by recur-
sively applying the relation.

Assuming ωb is piece-wise constant during the sample interval [tk , tk+1), i ≤
k ≤ j − 1, the orientation matrix at time tk and tk+1 are then related via

Rn
b(tk+1) = Rn

b(tk)ExpR(ωb(tk)∆T ). (2.36)

Recalling the sensor measurement model (2.23) and expressing the angular veloc-
ity in terms of the gyroscope measurement, bias, and noise, (2.36) can be rewrit-
ten as

Rk+1 = RkExpR

(
(ω̃k − oωk − e

ω
k )∆T

)
, (2.37)

where the coordinate frame symbols are dropped, and the notation ( · )k � ( · )(tk)
is introduced for brevity. To compute the orientation change during [ti , tj ), (2.37)
is recursively evaluated to get

Rj = Ri

j−1∏

k=i

ExpR

(
(ω̃k − oωk − e

ω
k )∆T

)
. (2.38)

Here
∏j−1

k=i Ak = AiAi+1 · · ·Aj−1, A( · ) ∈ SO(3). Assume the bias is constant over
the interval [ti , tj ), i.e., oωk ≡ oω. let ∆Rij � R�i Rj , and J rk � J r ((ωk − oω)∆T ).
Using the approximation in the previous section (2.38) can be rewritten as [9]

∆R̃ij = ∆RijExpR(δφij ), (2.39a)
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where

∆R̃ij =
j−1∏

k=i

ExpR ((ω̃k − oω)∆T ) , (2.39b)

δφij ≈
j−1∑

k=i

∆R̃�k+1j J
r
k e

ω
k ∆T . (2.39c)

Equation (2.39) is referred to as the pre-integrated gyroscope measurement model.

2.6 Inertial Navigation Systems

The basic idea of INS is to determine the position and velocity w.r.t. an inertial
reference frame using Newton’s laws of motion. The process, known as inertial
navigation [12], may be equivalently realized with inertial sensors that sense ro-
tational and translational motion.

An INS framework is shown in Figure 2.6. The body-mounted accelerometer
measures the specific force in the b-frame, which is converted to the n-frame us-
ing the orientation matrix obtained by integrating the angular velocity measure-
ment. The acceleration in the n-frame is obtained by removing the local gravity
vector from the specific force. The acceleration is then integrated twice to get
position and velocity estimates.

An INS is an entirely self-contained navigation solution because it does not
depend on signals from external sources. However, integrating the IMU measure-
ments will cause errors to accumulate over time so the estimates will become
more and more inaccurate. The error growth rate depends on the IMU sensor
grade. It can grow to several hundred meters in 1 minute for consumer-grade
IMUs like the one in Figure 1.1 [13].

2.7 Magnetic Field Models

The magnetic field is a vector field M(r, t) : R3 × R → R3, where r ∈ R3 denotes
the spatial location and t denotes the time. It fulfills the Maxwell’s equations [14]

∇ ·M(r, t) = 0, (2.40a)

∇ ×M(r, t) = µ0

(
J + ε0

∂E
∂t

)
, (2.40b)

where µ0 denotes the vacuum magnetic permeability, ε0 denotes the vacuum per-
mittivity, E denotes the electric field, and J denotes the current density. When
there is no free current and the electric field is static, which is the default assump-
tion in this thesis, Maxwell’s equation simplifies to

∇ ·M(r) = 0, (2.41a)

∇ ×M(r) = 0. (2.41b)
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Figure 2.6: A simplified inertial navigation system.

Here the dependence on time is dropped. The second condition in (2.41), namely
the curl-free field condition, allows for the magnetic field to be defined as the
gradient of a scalar magnetic field potential φ(r), i.e.,

M(r) = ∇φ(r). (2.42)

There are two mainstream approaches to mathematically modeling indoor
magnetic fields. These are the Gaussian process model and the polynomial model.
The former can represent the magnetic field on multi-scale levels [15, 16], while
the latter is more common in modeling the field on a smaller (local) scale.

2.7.1 Gaussian Process Model

A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution. A real-valued Gaussian process f (x)
with the mean m(x) = E[f (x)] and the covariance function k(x, x′) = E[(f (x) −
m(x))(f (x) − m(x′))�] may written as [17]

f (x) ∼ GP (m(x), k (x, x′)) . (2.43)

Being a non-parametric model, the Gaussian process is a powerful tool for model-
ing and inference. The disadvantage is, however, that the computation complex-
ity of regression increases cubically w.r.t. the number of data points.
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In the work [18], the covariance functions of the Gaussian process used for
modeling the magnetic field are designed in such a way that the process fulfills
the divergence- and curl-free conditions.

2.7.2 Polynomial Model

The polynomial model is named after the polynomial function used to model the
scalar magnetic field potential φ(r) [19]. That is,

φ(r; µ) = h(r)�µ + c. (2.44)

Here h(r) is a vector whose elements are given by the product rixr
j
y rkz for ∀i, j, k ∈

N, subject to 1 ≤ i + j + k ≤ m, m = 1, 2, · · · , l + 1. Further, µ ∈ RL is a column
vector of dimension L = (l + 4)(l + 3)(l + 2)/6 − 1 and c is an arbitrary constant.
Let Γ(r) = ∇r h(r)�, then M(r; µ) can be written as

M(r; µ) = ∇rφ(r; µ) = Γ(r)µ. (2.45)

For the model M(r; µ) to fulfill the second condition in (2.41), the model pa-
rameters µ must be selected so that the following holds

∇r · Γ(r)µ =
∑

i=x,y,z

d[Γ(r)µ]i
dri

= 0, ∀r ∈ Ω. (2.46)

Here d[Γ(r)µ]i
dri

is an (l−1)th degree polynomial. For the equality in (2.46) to hold for
all r, the coefficients for each term in the polynomial must be 0. This constraint
can be written as a linear equation system

Dpµ = 0, (2.47)

where Dp is a constant matrix that depends only on the degree of the polynomial
function, see [19] for details.

2.8 Optimization

Optimization is an important tool for model parameter and state estimation. It
is widely used in sensor calibration [20, 21], visual-inertial navigation [22], and
SLAM applications [23, 24]. In these applications, the optimization problems
that need to be solved are typically nonlinear least squares problems. Due to
the optimization variables involving rotations, special care must be taken when
solving these problems. The study of this type of optimization is referred to as
optimization on smooth manifolds [8].
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2.8.1 Nonlinear Least Squares Problem

A nonlinear least-square problem is a problem of the form [25]

x∗ = arg min
x

1
2

m∑

k=1

f 2
k (x), (2.48)

with variable x ∈ Rn and where fk : Rn → R. It can be rewritten in a more
compact form as

x∗ = arg min
x

V (x), V (x) =
1
2
‖f (x)‖2, (2.49)

where f (x) = [f1(x), f2(x), · · · , fm(x)]�.

2.8.2 The Gauss-Newton Method

The Gauss-Newton method is an iterative optimization algorithm to solve (2.49).
At each iteration, it replaces f (x) by its first-order Taylor approximation around
the current iterate xk [25]. That is, f (x) is approximated as

f (x) ≈ f (xk) + J(xk)(x − xk︸︷︷︸
�∆k

), (2.50)

where J(xk) ∈ Rm×n is the Jacobian matrix defined as

J(xk) =
∂f (x)
∂x

∣∣∣∣∣
x=xk

�



∂f1

∂x
(1)
k

· · · ∂f1

∂x
(n)
k

...
...

∂fm

∂x
(1)
k

· · · ∂fm

∂x
(n)
k


, (2.51)

and ∆k denotes the increment that will be applied to xk to form the next iterate.
In this way, the optimization problem becomes a linear least squares problem,
and the optimal ∆∗k should fulfill

J(xk)�J(xk)∆∗k = −J(xk)�f (xk). (2.52)

Therefore,

∆∗k = −J(xk)†f (xk), (2.53)

where ( · )† denote the Moore–Penrose inverse [26]. The algorithm will update the
iterate, and repeat the process until it meets some termination conditions, e.g.,
the increment’s norm is smaller than a threshold. The Gauss-Newton method is
summarized in Algorithm 1.
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Algorithm 1 Gauss-Newton method

Input: the function f whose squared norm is to be minimized
Output: the minimizer x∗

Initialisation : initial value x0, iterate step k = 0
While the user-specified termination condition is NOT met

Calculate the Jacobian J(xk) and the function value f (xk)
Calculate the increment ∆∗k according to (2.53)
Set the next iterate to xk+1 = xk + ∆∗k
Set iterate step k = k + 1

end while
Set x∗ = xk

2.8.3 Optimization on Smooth Manifolds

When the optimization variables contain rotation components, e.g., rotation ma-
trices, they will cause several issues for the Gauss-Newton method. First, one
may not calculate the Jacobian matrices as easily as in Euclidean space, since the
rotation components live in a nonlinear space. Second, the increment calculated
in each step may not easily be applied to the rotation matrices, as matrix addi-
tions will lead to them no longer being rotation matrices. Fortunately, in most
cases, the optimization variables live on smooth manifolds, and the study of opti-
mization on smooth manifolds provides good tools for solving these issues.

In the case where the optimization variables in (2.49) belong to a smooth
manifold M, the optimization problem can be reparameterized using a vector
δxk ∈ Rdim(M) [9]. That is,

arg min
x∈M

1
2
‖f (x)‖2 ⇒ arg min

δxk∈Rdim(M)

1
2
‖f (xk ⊕ δxk)‖2. (2.54)

Here xk ∈ M denotes the current iterate. Note that the optimization variable δx is
in Euclidean space and that f (xk ⊕ δxk) ≈ f (xk) + J(xk)δxk , where J(xk) is defined
in (2.19). Therefore, the standard Gauss-Newton method can be applied to the
right-hand side of (2.54). In each iterate, the optimal δx∗k is sought after and the
next iterate is computed as xk+1 = xk ⊕ δx∗k .

2.9 State Estimation

State estimation is a technique for estimating the states of a system from the
measurements of its output. It is one of the most important parts of the magnetic
field-aided INS.

2.9.1 State-Space Models

The state-space model describes the evolution of the state and the relation be-
tween the measurement and the state. Two commonly used state-space models
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are linear and nonlinear state-space models. Linear state-space models can be
written as

xk+1 = Fkxk + Gkuk + wk, (2.55a)

yk = Hkxk + ek. (2.55b)

Here xk ∈ Rn and yk ∈ Rp denote the state at time k and the measurement, re-
spectively. Moreover, uk ∈ Rm, wk ∈ Rn, and ek ∈ Rp denote the system input,
the process noise, and the measurement noise, respectively. Lastly, Fk ∈ Rn×n,
Gk ∈ Rn×m, and Hk ∈ Rp×n are matrices of proper size. Nonlinear state-space
models can be written as

xk+1 = fk(xk, uk) + wk, (2.56a)

yk = hk(xk) + ek. (2.56b)

Here fk(xk, uk) and hk(xk) denote the nonlinear state dynamics and the measure-
ment equation, respectively.

Additionally, in both cases the random variables {x0, wk, ek} are assumed to
satisfy

E




x0
wi
ei


[
x0 wj ej 1

]
 =


Π0 0 0 0
0 Qiδij 0 0
0 0 Riδij 0

 , (2.57)

where δij denotes the Kronecker delta.

2.9.2 Kalman Filter and Extended Kalman Filter

When x0, wk , and ek are Gaussian random variables, the least-mean-squares esti-
mator for (2.55) is the well-celebrated Kalman filter (KF) [27]. The Kalman filter
gives the estimate x̂k|k and its covariance matrix Pk|k given the measurement up to
time k, and its procedures are given in Algorithm 2. For the nonlinear state-space
model (2.56), the Kalman filter can be applied to the linearized state-space model,
resulting in the extended Kalman filter (EKF), whose procedures are given in Al-
gorithm 3.

2.9.3 Error-State Kalman Filter

The error-state Kalman filter (ESKF) is introduced to circumvent the problem that
the filter correction cannot be directly added to the state when the state contains
rotation components, i.e., the state space is a manifold. It is essentially an EKF,
except the filtering happens in the error state space [28, p. 198]. The error state
is a vector in a linear space representing the difference between two state vectors.
The main advantage of introducing the error state is that the uncertainty in the
error state is well-defined, especially when the state space is a manifold. However,
for the sake of simplicity, the basic idea will be presented with the state space
being Euclidean space.
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Algorithm 2 Kalman filter

Input: {uk, yk}Nk=0
Output: {x̂k|k , Pk|k}Nk=0
Initialisation : estimated state x̂0|−1, covariance matrix P0|−1
For k = 0 to N − 1 do

Measurement update:
Sk = HkPk|k−1H

�
k + Rk

Kk = Pk|k−1H
�
k S
−1
k

x̂k|k = x̂k|k−1 + Kk(yk − Hkx̂k|k−1)
Pk|k = Pk|k−1 − KkHkPk|k−1
Time update:
x̂k+1|k = Fk x̂k|k + Gkuk
Pk+1|k = FkPk|kF

�
k + Qk

end for

Algorithm 3 Extended Kalman filter

Input: {uk, yk}Nk=0
Output: {x̂k|k , Pk|k}Nk=0
Initialisation : estimated state x̂0|−1, covariance matrix P0|−1
For k = 0 to N − 1 do

Measurement update:
Hk = ∂hk (xk )

∂xk

∣∣∣
xk=x̂k|k−1

Sk = HkPk|k−1H
�
k + Rk

Kk = Pk|k−1H
�
k S
−1
k

x̂k|k = x̂k|k−1 + Kk(yk − hk(x̂k|k−1))
Pk|k = Pk|k−1 − KkHkPk|k−1
Time update:
Fk = ∂fk (xk ,uk )

∂xk

∣∣∣
xk=x̂k|k

x̂k+1|k = fk(x̂k|k , uk)
Pk+1|k = FkPk|kF

�
k + Qk

end for
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Consider the nonlinear state space model (2.56). Let δxk � xtrue
k − x̄k denote

the difference between the true state and some linearization point, then the lin-
earization can be carried out with Taylor’s expansion

xtrue
k+1 = fk(xtrue

k , uk) + wk

≈ fk(x̄k , uk)︸�����︷︷�����︸
x̄k+1

+
∂fk(xk, uk)

∂xk

∣∣∣∣∣
xk=x̄k

(xtrue
k − x̄k︸�����︷︷�����︸
�δxk

) + wk, (2.58a)

yk = h(xtrue
k ) + ek

≈ h(x̄k)︸︷︷︸
ȳk

+
∂hk(xk)
∂xk

∣∣∣∣∣
xk=x̄k

(xtrue
k − x̄k︸�����︷︷�����︸
�δxk

) + ek. (2.58b)

Move the first term on the right hand side of (2.58a) and (2.58b) to the left, re-
spectively, and using the definition δyk � yk − h(x̄k) the error-state-space model
can be identified as

δxk+1 = Fkδxk + wk, (2.59a)

δyk = Hkδxk + ek, (2.59b)

where

Fk =
∂fk(xk, uk)

∂xk

∣∣∣∣∣
xk=x̄k

, (2.59c)

Hk =
∂hk(xk)
∂xk

∣∣∣∣∣
xk=x̄k

. (2.59d)

The standard Kalman filter can be used to estimate δxk and the error state es-
timate δx̂k|k will add to x̄k to form the posterior estimate x̂k|k . The posterior
estimate will become the linearization point for propagating the state to the next
time step. This is equivalent to linearizing around the current state estimate,
which makes it a de facto EKF filter. Since the error state estimate is used to
form x̂k|k to make it as close to the true state as possible, the prior estimate of
the error state is always 0. Hence, in the error state Kalman filter, only the error
state’s covariance is propagated. The error state Kalman filter algorithm is given
in Algorithm 4.

As said, the ESKF is useful when the state space is a manifold, which is com-
mon in localization and navigation applications. In these applications, the state
vector contains an orientation component. Furthermore, the input to the system
is usually unknown and can only be measured with some noise. The linearization
is much more involved than presented here, interested readers can refer to [6] for
the derivation and actual implementation.
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Algorithm 4 Error state Kalman filter algorithm

Input: {uk, yk}Nk=0
Output: {x̂k|k , Pk|k}Nk=1
Initialisation : nominal state x̄0, covariance matrix P0|−1
For k = 0 to N − 1 do

Error state observation
Sk = HkPk|k−1H

�
k + Rk

Kk = Pk|k−1H
�
k S
−1
k

δx̂k|k = Kk(yk − Hkx̄k)
Pk|k = Pk|k−1 − KkHkPk|k−1
Form the estimated state and update the nominal state
x̂k|k = x̄k ⊕ δx̂k|k
x̄k = x̂k|k
State propagation
x̄k+1 = f (x̄k , uk)
Error state uncertainty propagation
Pk+1|k = FkPk|kF

�
k + Qk

end for

2.9.4 Observability

In the deterministic context, i.e., the noise-free state-space model, observability
determines whether the state can be inferred from the system’s output. Therefore,
to understand the behavior of the model it is important to conduct an observabil-
ity analysis on the state-space model. The observability analysis may be carried
out in several ways, one of which is constructing the observability matrix and
checking if it has full column rank. If it has a full column rank the system is ob-
servable. For the linear state-space model (2.55), the observability matrix Ok0:kf
associated within time window [k0, kf ] is defined as [29]

Ok0:kf �



Hk0
Hk0+1Φ(k0 + 1, k0)

...
Hkf Φ(kf , k0)


, (2.60a)

where

Φ(kf , k0) = Fkf −1Fkf −2 · · · Fk0
. (2.60b)

For the nonlinear state-space model (2.56), it is convenient to consider the con-
cept of local observability [30]. In this definition, the state-space model is lin-
earized around a nominal trajectory, and the observability matrix is constructed
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with the Jacobians computed from the linearization. That is,

Ōk0:kf =



H̄k0
H̄k0+1Φ̄(k0 + 1, k0)

...
H̄kf Φ̄(kf , k0)


, (2.61a)

where

H̄k =
∂hk(xk)
∂xk

∣∣∣∣∣
xk=x̄k

, (2.61b)

Φ̄(k, k0) = F̄k−1F̄k−2 · · · F̄k0
, (2.61c)

F̄k =
∂fk(xk, uk)

∂xk

∣∣∣∣∣
xk=x̄k ,uk=ūk

. (2.61d)

Here {x̄k |k = k0 : kf } denotes the nominal trajectory, which is the solution of
(2.56) with the control sequence ūk0:k0+N−1 and the process noise turned off.
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3
Sensor Calibration

Sensor calibration involves identifying and compensating for sensor imperfec-
tions. This process is crucial for INS, which estimate the position and orien-
tation of a moving object by integrating acceleration and angular velocity mea-
surements from an IMU. The accuracy of these estimates is influenced by several
factors, including the quality of calibration. For example, the bias in the measure-
ments from uncalibrated accelerometers and gyroscopes can individually cause
drift in the estimated position to grow at a rate of t2 and t3, respectively [13].
Therefore, it is essential to address sensor errors carefully.

Additionally, the hardware used in magnetic field-aided INS includes a 2-D
magnetometer array and an IMU. Since each magnetometer in the array may ex-
hibit slight differences and the sensitivity axes might not align with those of the
IMU, it is vital to calibrate the magnetometers and IMU jointly. This ensures that
each magnetometer’s imperfections are compensated for and that the sensitivity
axes of all sensors are properly aligned.

3.1 Sensor Models

Consider the measurement from an accelerometer, a gyroscope, and a magne-
tometer triad at time k,

yk =


s̃k
ω̃k
m̃k

 ∈ R
9. (3.1)

If the sensor system is slowly rotated, with a minimum of translational move-
ment, in a homogenous magnetic field, then the measurement can be modeled
as [31]

yk = h̃(xk, uk ; θ) + ek, (3.2)

33
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where ek = [ea
�

k eω
�

k em
�

k ]� ∈ R9 is the additive white Gaussian noise with the
covariance matrix Σ = Cov(ek) = blkdiag(Σa,Σm,Σω). Here Σ( · ) denote the noise
covariance of each type of sensor. Further,

h̃(xk, uk ; θ) =


−R�k gn + oa

ωk + oω

DmR�k m(α) + om

 , (3.3a)

where

θ = {oa, oω, Dm, om, α}, (3.3b)

xk = Rk, (3.3c)

uk = ωk. (3.3d)

Here Rk ∈ SO(3) denotes the orientation matrix of the body frame, i.e., Rk ≡ Rn
bk

.
Moreover, gn = [0 0 − g0]�, where g0 is the amplitude of the local gravity. Fur-
thermore, Dm ∈ R3×3 denotes the magnetometer distortion matrix, which en-
codes the compound effects of sensor imperfections and the misalignment be-
tween the axes of the magnetometer frame and inertial sensors’ frame. Lastly,
the magnetic field is parameterized by its dip angle α ∈ [−π, π), which is the an-
gle formed by the field and the horizontal plane, and can be written as m(α) =
[0 cos(α) − sin(α)]�. When the sample interval ∆T is small enough so that the
angular velocity is nearly constant in that interval, the orientation matrices at
two consecutive instances are related to each other via the difference equation
Rk+1 = Rk ExpR(ωk∆T ).

3.2 Nonlinear Least Squares Problem

A nonlinear least square problem can be set up to find the best fit θ∗ and R∗0:N−1
for the measurements. The reason why ωk is not sought after is that it will
be determined by the orientation matrices according to the difference equation
Rk+1 = Rk ExpR(ωk∆T ).

Let y0:N−1 denote a sequence of measurements {y0, y1, · · · , yN−1}. Then the
optimization problem is set up as

{θ∗, R∗0:N−1} = arg min
θ,R0:N−1

V (θ, R0:N−1), (3.4a)

where

V (θ, R0:N−1) =
1
2

N−1∑

0

‖s̃k + R�k gn − oa‖2Σa
+

1
2

N−1∑

0

‖m̃k − DmR�k m(α) − om‖2Σm

+
1
2

N−2∑

0

‖ω̃k −
1
∆T

LogR(R�k Rk+1) − oω‖2Σω
.

(3.4b)
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Here ω̃N−1 is discarded since the orientation RN is needed to construct the resid-
ual term, whose information is unavailable in the measurements.

The cost function (3.4b) can be rewritten into a form more commonly used to
solve using the Gauss-Newton method, i.e.,

V (θ, R0:N−1) =
1
2

N−1∑

0

‖ L�a (s̃k + R�k gn − oa)
︸������������������︷︷������������������︸

�rak

‖2 +
1
2

N−1∑

0

‖ L�m
(
m̃k − DmR�k m(α) − om

)
︸������������������������������︷︷������������������������������︸

�rmk

‖2

+
1
2

N−2∑

0

‖ L�ω
(
ω̃k −

1
∆T

LogR(R�k Rk+1) − oω
)

︸���������������������������������������︷︷���������������������������������������︸
�rωk

‖2

=
1
2
‖f (θ, R0:N−1)‖2 ,

(3.5a)

f (θ, R0:N−1) �



ra0
...

raN−1
rm0
...

rmN−1
rω0
...

rωN−2



, (3.5b)

where L( · ) is the lower triangular matrix from Cholesky decomposition of the
covariance matrix Σ−1

( · ), and rak , rmk , and rωk denote the normalized residuals for
accelerometer, magnetometer, and gyroscope measurement, respectively.

The optimization problem (3.4) is a standard optimization problem on smooth
manifolds. Consider the manifold,

M = {(θvec, R0:N−1) | θvec ∈ R19, R0:N−1 ∈ SO(3)N },
θvec = [(oa)� (oω)� Dm

vec
� (om)� α]�,

(3.6)

where Dm
vec denotes the vectorized matrix, i.e.,

Dm
vec = [Dm

1,1 Dm
2,1 Dm

3,1 · · ·D
m
2,3 Dm

3,3]�. (3.7)

Here Dm
i,j denotes the element at (i, j) in Dm. Each normalized residual is a func-

tion mapping fromM to R3. To calculate the derivatives of these function w.r.t.
the elements inM, the operator ⊕ forM and � for R3 are defined as

X ⊕ δX � (θvec + δθvec,ExpR(δR0)R0, · · · ,ExpR(δRN−1)RN−1), (3.8a)

a � b � a − b. (3.8b)
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Here X = (θvec, R0:N−1) ∈ M, δX = [δθ�vec, δR
�
0 , · · · , δR

�
N−1]�, where δθvec ∈ R19

and δRi ∈ R3. Furthermore, a, b ∈ R3. Then the Jacobian of the residual required
for the Gauss-Newton method can be calculated. For the residual term rak ,

∂rak
∂Rk

= L�a [R�k gn]∧R�k , (3.9a)

∂rak
∂oa

= −L�a ; (3.9b)

for the residual term rmk ,

∂rmk
∂Dm

vec
= −L�m

(
R�k m(α)

)�
⊗K I3, (3.10a)

∂rmk
∂Rk

= −L�mDm[R�k m(α)]∧R�k , (3.10b)

∂rmk
∂α

= L�mD
mR�k [0 sin(α) cos(α)]�, (3.10c)

∂rmk
∂om

= −L�m; (3.10d)

(3.10e)

and for the residual term rωk ,

∂rωk
∂Rk

=
1
∆T

L�ωJ
−r

(
LogR(R�k Rk+1)

)
R�k+1, (3.11a)

∂rωk
∂Rk+1

= − 1
∆T

L�ωJ
−r

(
LogR(R�k Rk+1)

)
R�k+1, (3.11b)

∂rωk
∂oω

= −L�ω, (3.11c)

where ⊗K denotes the Kronecker product. The Jacobian matrix of f (θ, R0:N−1)
can be constructed from these Jacobian matrices of the residuals, and the opti-
mization procedure can be carried out as described in Section.2.8.3.

3.3 Reduce Optimizing Variables by IMU
Pre-integration

The calibration data collection usually requires several minutes to complete, be-
cause the sensor system needs to be rotated slowly to keep a minimum acceler-
ation while exposing to as many orientations as possible. This leads to a large
number of data samples N , and the minimization process in (3.4) becomes time-
consuming.

In fact, the calibration parameter θ has a much smaller dimension compared
to the rotation trajectory R0:N−1, therefore, to speed up the calibration one may
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consider reducing the number of the orientation matrices to be optimized while
keeping them representative of the rotation trajectory. A natural choice is to
optimize the orientation matrices at every Nint timesteps. This means that the
residual terms need to be adjusted accordingly. It is easily done for accelerometer
and magnetometer measurements — every Nint measurements are kept because
they only depend on the orientation of the sensor at the measuring time instance.
However, it is not straightforward to do so for gyroscope measurements because
the original gyroscope residual term involves orientation matrices at consecutive
timestamps. Hence a method for combining gyroscope measurements in a time
interval so that the combined measurement only concerns the orientation at the
start and the end is needed. The pre-integrated gyroscope measurement model
proposed in [9] suits this aim well.

Recalling the result in Section 2.5, the pre-integrated gyroscope measurement
model on the time interval [ti , tj ] is

∆R̃ij = ∆RijExpR(δφij ), (3.12a)

where

∆R̃ij =
j−1∏

k=i

ExpR ((ω̃k − oω)∆T ) , (3.12b)

∆Rij = R�i Rj , (3.12c)

δφij ≈ Σ
j−1
k=i∆R̃

�
k+1j J

r
k e

ω
k ∆T , (3.12d)

J rk � J r ((ω̃k − oω)∆T ). (3.12e)

It is natural to construct the residual for the pre-integrated gyroscope measure-
ment as

r
p.
ij = L�ijLogR(∆R̃�ij∆Rij ), (3.13)

where Lij is the lower triangular matrix from Cholesky decomposition of the

inverse of the covariance matrix Σ
ij
p. = Cov(δφij ). The residual can be further

tailored to suit the calibration task by reparameterizing the gyroscope bias as

oω = ōω + ∆oω, (3.14)

where ōω ∈ R3 denotes the nominal gyroscope bias and ∆oω ∈ R3 denotes the
difference in the nominal and true gyroscope bias. That is, instead of seeking a
good fit oω∗ for the gyroscope bias, the goal is to find an optimal ∆oω∗ that gives
minimum squared error.

Reparameterizing the gyroscope bias offers several benefits. First, the nom-
inal bias can be easily obtained by averaging measurements when the sensor is
stationary. This nominal bias is typically close to the true bias, which helps initial-
ize the orientation matrices and thereby reduces the likelihood of optimization
failure. Secondly, the pre-integrated measurement ∆R̃ij is a function of the gy-
roscope bias oω, whose value is changed in each iteration in the Guass-Newton
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method. This means it needs to be re-evaluated each iteration, which is computa-
tionally inefficient. With the nominal gyroscope bias ōω, the re-evaluation, given
an updated ∆oω, can be approximated by [9]

∆R̃ij (ō
ω + ∆oω) ≈

j−1∏

k=i

ExpR ((ω̃k − ōω)∆T )

︸�������������������������︷︷�������������������������︸
∆R̄ij

ExpR


∂∆R̃ij

∂oω

∣∣∣∣∣
oω=ōω

∆oω
 , (3.15)

where ∆R̃ij (ōω + ∆oω) denotes the value of ∆R̃ij when oω = ōω + ∆oω. Note that

∆R̄ij and the Jacobian matrix
∂∆R̃ij

∂oω

∣∣∣∣∣
oω=ōω

remain constant at each iteration, so

they can be precomputed before the optimization starts1. Lastly, the covariance
matrix Σ

ij
p. is also a function of oω. Given that the nominal bias ōω is close enough

to the true bias, then ω̃k − oω ≈ ω̃k − ôω. Further, due to the sensor system being
slowly rotated, (ω̃k − ōω)∆T is so small that J r ((ω̃k − ōω)∆T ) is close to the identity
matrix. Therefore, Σij

p. can be further simplified to

Σ
ij
p. ≈ Cov


j−1∑

k=i

∆R̃�k+1j e
ω
k ∆T

 . (3.16)

When the gyroscope noise on the three axes is assumed to be uncorrelated and
identically distributed, i.e., Σω = σ2

ωI3, it can be shown that

Σ
ij
p. = Cov


j−1∑

k=i

eωk ∆T

 = (j − i)∆T 2σ2
ωI3. (3.17)

In this way, the pre-integrated noise covariance matrix is approximated to a con-
stant matrix, so it can be pre-calculated and does not need to be updated in each
iteration. With slight abuse of notation, Lp. is used to denote the lower triangle
matrix from the Cholesky decomposition of the covariance matrix (3.17) when
pre-integration stride Nint = j − i is decided.

Now consider the optimization problem after pre-integrating every Nint mea-
surements. Let two index sets S1 and S2 be defined as

S1 �
{
0, Nint, · · · ,

⌊N − 1
Nint

⌋
Nint

}
, (3.18a)

S2 �
{
0, Nint, · · · ,

(⌊N − 1
Nint

⌋
−1

)
Nint

}
. (3.18b)

The measurements and their covariance in the optimization problem are

{s̃k′ |k′ ∈ S1}, Cov(s̃k′ ) = Σa, (3.19a)

{m̃k′ |k′ ∈ S1}, Cov(m̃k′ ) = Σm, (3.19b)

{yp.
k′ |k
′ ∈ S2}, Cov(yp.

k′ ) = Σp., (3.19c)

1The exact expression of the Jacobian matrix can be found in Appendix in [9, p. 17].



3.3 Reduce Optimizing Variables by IMU Pre-integration 39

where
y

p.
k′ � ∆R̃k′k′+Nint

. (3.20)

Let θ
′
� {oa,∆oω, Dm, om, α} and {Rk′ } � {Rk | k ∈ S1}. A new optimization

problem can be set up as

V
′
(θ
′
, {Rk′ }) =

1
2

∑

k′∈S1

‖ L�a (s̃k′ + R�k′g
n − oa)

︸�������������������︷︷�������������������︸
�ra

k′

‖2 +
1
2

∑

k′∈S1

‖ L�m
(
m̃k′ − DmR�k′m(α) − om

)
︸�������������������������������︷︷�������������������������������︸

�rm
k′

‖2

+
1
2

∑

k′∈S2

‖ L�p.LogR(yp.�

k′ R�k′Rk′+Nint
)

︸��������������������������︷︷��������������������������︸
�r

p.
k′

‖2

=
1
2

∥∥∥f ′ (θ′ , {Rk′ })
∥∥∥2

,

(3.21a)
where

f ′(θ
′
, {Rk′ }) �



ra0
...

ra� N−1
Nint
�Nint

rm0
...

rm� N−1
Nint
�Nint

r
p.
0
...

r
p.
(� N−1

Nint
�−1)Nint



. (3.21b)

The Jacobian matrices of rak′ and rmk′ are of the same form as in Section 3.2. The
Jacobian matrices of rp.

k′ w.r.t. Rk′ , Rk′+Nint
, and ∆oω are

∂r
p.
k′

∂Rk′
= −L�p.J

−r (LogR(Q))R�k′+Nint
, (3.22a)

∂r
p.
k′

∂Rk′+Nint

= L�p.J
−r (LogR(Q))R�k′+Nint

, (3.22b)

∂r
p.
k′

∂∆oω
= −L�p.J

−r (LogR(Q))Q�J r

∂y

p.
k′

∂oω

∣∣∣∣∣
oω=ōω

∆oω

∂y

p.
k′

∂oω

∣∣∣∣∣
oω=ōω

, 2 (3.22c)

where

Q = y
p.�

k′ R�k′Rk′+Nint
. (3.22d)

2The derivation can be found in [9, p. 19, eq. 81].
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The calibration parameters can be obtained by solving the optimization prob-
lem with the Gauss-Newton method given the derived Jacobians. The procedures
described in this section constitute the proposed method to calibrate the sensor
system.

3.4 Evaluation

The proposed method was evaluated using both simulation and real-world datasets.
To measure calibration accuracy, the percentage error of calibration parameters
was computed for the simulation datasets. For sensor bias, the percentage error
was calculated as the ratio of the norm of the error vector and that of the true bias
vector. For distortion matrix D, the error was determined as the ratio of the norm
of the vectorized error matrix and that of the vectorized true distortion matrix.
Lastly, the dip angle percentage error was computed as the ratio of the absolute
value of the angle error and the true dip angle.

3.4.1 Simulation Setup and Results

In the simulation, the datasets are generated according to the sensor model (3.3a).
To limit memory usage in generating the datasets, the sensor sampling rate is set
at 100 Hz, and each dataset consists of 32182 measurement samples, correspond-
ing to a data collection duration of approximately 5 minutes. Furthermore, the
true parameters used to generate the measurements are drawn as follows,

oa ∼ N (0, 0.52I3) (m/s2)

oω ∼ N ([0.01 0.01 0.01]�, 0.0042I3) (rad/s)

Dm
i,j ∼


N (27, 0.52), if i = j

N (0, 0.52), otherwise

om ∼ N (0, 22I3) (µT)

α ∼ N (1.3, 0.12) (rad)

(3.23)

The standard deviation of the Gaussian white measurement noise on each axis of
the accelerometer, gyroscope, and magnetometer is set to 0.5 m/s2, 0.001 rad/s,
and 0.3 µT, respectively. Figure 3.1 shows an example of the simulated dataset.

The initial value for the calibration parameter was chosen as the mean value of
the distribution, and the Gauss-Newton method was applied to the optimization
problem in (3.21). The magnetometer data was then calibrated with the obtained
calibration parameters as follows,

m̆k = D̂m−1
(m̃k − ôm). (3.24)

The norm of the calibrated data is scaled by the true magnetic field magnitude
because the magnetic field is assumed to have a unit norm in calibration. The
scaled norm is plotted against the norm of the uncalibrated data, as shown in
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Figure 3.1: The simulated dataset used in the evaluation.

Figure 3.2. The results indicate that the norm of the calibrated magnetometer
measurements exhibits lower variance and is more concentrated around the true
magnetic field magnitude of 27 µT, demonstrating the effectiveness of the pro-
posed calibration algorithm. Additionally, the experiment was repeated 10 times,
and the calibration parameter error box plots are presented in Figure 3.3. The per-
centage errors for all parameters are within a reasonable range (less than 10%),
further confirming the effectiveness of the proposed algorithm.

3.4.2 Real-world Experiment Setup and Results

A real-world experiment was also conducted on the calibration dataset collected
by the sensor array board in Figure 1.1. The dataset was collected outdoors in
Linköping, Sweden. When collecting these datasets, the sensor board was placed
in an environment where the local magnetic field was approximately homoge-
nous. The data collection lasted approximately 4 minutes, during which the sen-
sor board was slowly rotated to minimize the acceleration induced by rotation
and to cover as many orientations as possible. The data collected by all sensors
were synchronized and the sampling rate was 500 Hz. The IMU data and magne-



42 3 Sensor Calibration

0 50 100 150 200 250 300 350

25.5

26

26.5

27

27.5

28

28.5

29

The magnetometer measurement norm

pre-calibration

post-calibration

Figure 3.2: The magnetometer measurement norm before and after calibra-
tion. The calibrated measurements’ norm fluctuates around the expected
magnetic field magnitude and has less variance.

tometer measurements from one of 30 magnetometers are shown in Figure 3.4.
To calibrate all sensors on board, the proposed algorithm was used to calibrate

a magnetometer and IMU pair one by one — the calibration process was repeated
30 times before the calibration task was completed. For each dataset, 30 pair-wise
calibration parameters are collected, enabling consistency checks. Consistency is
indicated by minimal variation in the inertial sensor biases and the dip angle
across the pair-wise calibrations.

The calibration results are presented in Figure 3.5 and Figure 3.6. It can be
seen from Figure 3.5 that the reported IMU biases are consistent since they have
small variances and are concentrated around the peak value. Furthermore, the
dip angle histogram plot also indicates that the algorithm is consistent because
the estimated dip angles are very close to the reference value given by the World
Magnetic Model [32]. Lastly, Figure 3.6 shows that the calibrated magnetome-
ter measurements exhibit significantly less variance in norm across sensors com-
pared to the uncalibrated data.
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Figure 3.3: The summary of the calibration parameter errors in 10 trials.
Here, the bottom and top of each box are the 25th and 75th percentiles of
the errors, respectively. Furthermore, the red line in the middle of each box
is the median value. Lastly, the horizontal bar at the top and the bottom are
the maximum and minimum values, respectively.
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Figure 3.4: The real-world dataset used in the evaluation.
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Figure 3.5: The histogram of calibration parameters reported in 30 pair-wise
experiments. Since the true IMU bias and dip angle should be the same
across all IMU-MAG calibration pairs, a concentrated histogram indicates
the calibration’s consistency.



46 3 Sensor Calibration

0 100 200 300 400 500 600 700 800 900

time: [s]

32

34

36

38

u
n
it

: 
 T

Magnetometer measurements norm before calibration

0 100 200 300 400 500 600 700 800 900

time: [s]

32

34

36

38

u
n
it

: 
 T

Magnetometer measurements norm after calibration

Figure 3.6: The norm of measurements from the 30 magnetometers before
calibration (upper) and after calibration (lower).



4
The Magnetic Field-Aided Inertial

Navigation System

A magnetic field-aided INS for indoor navigation is presented in this chapter. The
system leverages an array of magnetometers to measure spatial variations in the
magnetic field, which are then used to estimate the displacement and orientation
changes of the system, thereby aiding the INS. A block diagram of the system is
shown in Figure 4.1.

This chapter is adapted from the material presented in

Chuan Huang, Gustaf Hendeby, Hassen Fourati, Christophe Prieur,
and Isaac Skog. MAINS: A magnetic-field-aided inertial navigation
system for indoor positioning. IEEE Sensors Journal, 24(9):15156–
15166, 2024. doi: 10.1109/JSEN.2024.3379932,

and

Chuan Huang, Gustaf Hendeby, and Isaac Skog. A tightly-integrated
magnetic-field aided inertial navigation system. In Proc. 2022 25th
Int. Conf. on Information Fusion (FUSION), pages 1–8, Linköping,
Sweden, July 2022. doi: 10.23919/FUSION49751.2022.9841304.

4.1 System Modeling

Consider the problem of estimating the position and orientation of the sensor
platform in Figure 1.1 in an indoor environment where the magnetic field vari-
ation is similar to that in Figure 4.2. To that end, a state-space model will be
presented to realize a magnetic field-aided INS.

47
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Figure 4.1: Overview of the proposed magnetic field-aided INS and localiza-
tion result. The proposed system is a tightly integrated inertial navigation
system and magnetic field odometry. In the experiment, the sensor array
moves along a square with its borders in the colored region, and the black
curve is the estimated position.

Figure 4.2: Illustration of the magnetic-field magnitude variations inside
a building. The field near the floor was measured with a magnetometer,
whose location was tracked by camera-based tracking systems. The field
measurement was then interpolated, and the field magnitude was projected
on the floor.
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4.1.1 Inertial Navigation Equations

Let the INS navigation state xins

k , the inertial measurements ũk , and the process
noise wins

k be defined as

xins

k �



pn
k

vn
k
qk
oak
oωk


, ũk �

[
s̃k
ω̃k

]
, and wins

k �



wa
k

wω
k

woa
k

woω
k


, (4.1)

respectively. Here, pn
k ∈ R3, vn

k ∈ R3, and qk ∈ S3 denote the position, veloc-
ity, and orientation (parameterized as a unit quaternion) at time k, respectively.
The superscript n indicates that the vector is represented in the navigation frame.
Moreover, oak ∈ R3 and oωk ∈ R3 denote the accelerometer and gyroscope bias,
respectively. Lastly, wa

k and wω
k denote the accelerometer and gyroscope mea-

surement noise, respectively. And woa
k and woω

k denote the random walk process
noise for the accelerometer and gyroscope biases, respectively. For an INS that
uses low-cost sensors and moves at moderate velocities such that the effects of
the transport rate, earth rotation, etc., can be neglected, the navigation equations
are given by [6]

xins

k+1 = f ins(xins

k , ũk , w
ins

k ), (4.2a)

where

f ins(xins

k , ũk , w
ins

k )=



pn
k + vn

k∆T + (Rn
bk
sk + gn)∆T

2

2
vn
k + (Rn

bk
sk + gn)∆T

qk ⊗ Expq (ωk∆T )
oak + woa

k
oωk + woω

k


, (4.2b)

and

sk = s̃k − oak − w
a
k, (4.2c)

ωk = ω̃k − oωk − w
ω
k . (4.2d)

Here, the subscript bk denotes the body frame at time k. Further, wins

k is mod-
eled as a zero-mean white Gaussian noise process with covariance matrix Σwins

k
=

blkdiag(Σa,Σω,Σoa ,Σoω ), where Σ( · ) denotes the covariance matrix of the corre-
sponding noise component.

4.1.2 Magnetic Field Modeling

Recalling the polynomial model in Section 2.7.2, equations (2.45) and (2.47) de-
fine the magnetic field model, which writes as

M(r; µ) = Γ(r)µ, Dpµ = 0. (4.3)



50 4 The Magnetic Field-Aided Inertial Navigation System

Note that M(r; µ) can be reparameterized by introducing the matrix D⊥p � null{Dp}
whose columns span the nullspace of Dp , and then setting µ = D⊥p θ, where θ is a
column vector of dimension equal to that of the nullspace of Dp . The reparame-
terized model is given by

M(r; θ) = Φ(r)θ, (4.4)

where Φ(r) � Γ(r)D⊥p ∈ R3×κ is the regression matrix defined in [19] and θ ∈ Rκ

is the coefficient of the polynomial model; for a lth order polynomial the model
has κ = dim(θ) = l2 + 4l + 3 unknown parameters [16]1. Note that the model (4.4)
can be defined in either the body frame or navigation frame. Within this work, it
will be defined in the body frame. Next, a procedure for transforming the model
from body frame α to body frame β will be presented.

4.1.3 Transforming Models Between Body Frames

Let the magnetic field model (4.4) be associated with the body frame, which
means M(r; θ) accepts locations r expressed in the current body frame and out-
puts magnetic field vector in the same frame. Then the magnetic field can be
represented in the two body frames α and β, i.e.,

Mα(rα ; θα) = Φ(rα)θα,

Mβ(rβ ; θβ) = Φ(rβ)θβ.
(4.5)

Here the superscripts on M and r denote the corresponding body frame in which
they are resolved and the superscript on θ denotes the frame with which the
model coefficients are associated.

By expressing the magnetic field vector at a given location with the two mod-
els and aligning them in the same frame, the two models can be related as

Mβ(rβ ; θβ) = R
β
αM

α(rα ; θα), (4.6a)

where
rα = (Rβ

α)�rβ + ∆pα. (4.6b)

Here ∆pα denotes the translation vector expressed in body frame α. An illustra-
tion of the geometric relationship between the two frames and the magnetic field
vector is shown in Figure 4.3.

Now consider transforming the magnetic field model from body frame bk to
bk+1. Let the relative body frame change be encoded by

ψk =
[
∆p

bk
k

∆φk

]
, (4.7)

where ∆p
bk
k ∈ R3 and ∆φk ∈ [0, 2π)3 denote the translation and orientation

change from the body frame bk to bk+1, respectively. Replacing α and β with

1The 1st and 2nd order models are provided in Appendix 4.A.
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Figure 4.3: A 2D illustration of the geometric relationship between the body
frames at two consecutive times. The applicable region Ω of the magnetic
field model at time k is in blue, and the black dot indicates the location where
the two models output the corresponding magnetic field in their coordinate
frames.

bk and bk+1 respectively and using θk and θk+1 to denote the corresponding coef-
ficients, the following holds

Mbk+1(rbk+1 ; θk+1) = R
bk+1
bk

Mbk (rbk ; θk), (4.8a)

where
rbk = (Rbk+1

bk
)�rbk+1 + ∆p

bk
k . (4.8b)

The rotation matrix R
bk+1
bk

and translation ∆p
bk
k are given by

R
bk+1
bk

= (ExpR([∆φk]))� , (4.9a)

∆p
bk
k = Rn�

bk

(
vn
k∆T + (Rn

bk
sk + gn)

∆T 2

2

)
. (4.9b)

Here ∆φk = ωk∆T .
Next, substituting the generic magnetic model in (4.8) with the proposed poly-

nomial model (4.4) yields the equality

Φ(rbk+1)θk+1 = R
bk+1
bk

Φ(rbk )θk. (4.10)

Note that for a given {rbk+1 , θk, ψk}, (4.10) represents 3 linear equations. Since
θk+1 is of dimension κ, which is greater than 3, it is necessary to use more than
one location vector r to solve the equation system. In general, S = �κ/3� location
vectors can be used to construct the equation system
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Aθk+1 = B(ψk)θk, (4.11a)

where

A =



Φ(rbk+1
1 )
...

Φ(rbk+1
S )


, B(ψk) =



R
bk+1
bk

Φ(rbk
1 )

...

R
bk+1
bk

Φ(rbk
S )


. (4.11b)

If the vectors r
bk+1
1 , · · · , rbk+1

S can be chosen such that A has full column rank,
it holds that

θk+1 = A†B(ψk)θk. (4.12)

Since the magnetic field model should describe the magnetic field locally, the
update in (4.12), which with time implicitly expands the applicable space Ω of
the model, will inevitably introduce modeling errors. To account for those errors,
with a slight abuse of notation, the update of the polynomial coefficients of the
magnetic field as the body frame change is modeled as

θk+1 = f θ(θk, x
ins

k , ũk , w
ins

k , w
θ
k ), (4.13)

where
f θ(θk, x

ins

k , ũk , w
ins

k , w
θ
k ) = A†B(ψk)θk + wθ

k . (4.14)

Here wθ
k is assumed to be a white Gaussian noise process with zero mean and

covariance matrix Σθ . Note that ψk is a function of xins

k , ũk , and wins

k .

4.1.4 Magnetometer Array Measurement Model

Given the magnetic field model in (4.4), the measurement y(i)
k ∈ R3 from the ith

sensor in the magnetometer array at time k can be modeled as

y
(i)
k = Φ(rmi

)θk + e
(i)
k , (4.15)

where rmi
∈ R3 denotes the location of the ith magnetometer in the array. Further,

e
(i)
k ∈ R3 denotes the measurement error, which includes both the measurement

noise and the imperfections of the magnetic-field model. The error is assumed to
be white and Gaussian distributed with covariance matrix Σ

e
(i)
k

.

4.2 Complete System

Given the presented navigation equations and the magnetic-field model, the dy-
namics and observations of the full system can be described by the following
state-space model.
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Let the state vector xk , the process noise vector wk , and the measurement
noise ek be defined as

xk �

[
xins

k
θk

]
, wk �

[
wins

k
wθ
k

]
, and ek �



e
(1)
k
...

e
(N )
k


, (4.16)

respectively. Combining the models in (4.2), (4.13), and (4.15) gives the state-
space model

xk+1 = f (xk, ũk , wk), (4.17a)

yk = Hxk + ek, (4.17b)

where

f (xk, ũk , wk) =
[

f ins(xins

k , ũk , w
ins

k )
f θ(θk, x

ins

k , ũk , w
θ
k )

]
, (4.17c)

and

H =



03×16 Φ(rm1
)

...
...

03×16 Φ(rmN
)

 . (4.17d)

Here, the process noise covariance Qk and the measurement noise covariance Rk
are

Qk � Cov(wk) = blkdiag(Σa,Σω,Σoa ,Σoω ,Σθ), (4.17e)

Rk � Cov(ek) = blkdiag(Σ
e

(1)
k
,Σ

e
(2)
k
, · · · ,Σ

e
(N )
k

), (4.17f)

respectively.

4.3 State Estimation

This section discusses the state estimation technique used in the magnetic field-
aided INS. The nonlinear state-space model is linearized after introducing the
error state, and the state estimate is done by the ESKF, as mentioned in Section
2.9.3.

4.3.1 Error State Definition

The error state δxk is defined as

δxk �

[
δxins

k
δθk

]
and δxins

k =



δpn
k

δvn
k

εk
δoak
δoωk


. (4.18)
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Here, the standard additive error definition is used for the position, velocity, sen-
sor biases, and magnetic field model parameters (e.g., δpn

k = pn
k − p̂n

k ). On the
other hand, the orientation error εk ∈ R3 satisfies the equation Rn

bk
≈ R̂n

bk
(I3 + ε∧k ).

The true state xk and the estimated state x̂k relate to each other via

xk = x̂k ⊕ δxk, (4.19)

where the operator ⊕ is defined by

pn
k = p̂n

k + δpn
k , (4.20a)

vn
k = v̂n

k + δvn
k , (4.20b)

qk = q̂k ⊗ [1
1
2
ε�k ]�, (4.20c)

oak = ôak + δoak, (4.20d)

oωk = ôωk + δoωk , (4.20e)

θk = θ̂k + δθk. (4.20f)

4.3.2 Inertial Error State Dynamics

The dynamics of δxins

k has been derived in [6] and are given by

δxins

k+1 = F ins

k δxins

k + Gins

k wins

k , (4.21a)

where

F ins

k =



I3 I3∆T 0 0 0
0 I3 −R̂n

bk
[ŝk]∧∆T −R̂n

bk
∆T 0

0 0 ExpR(∆φ̂k)� 0 −I3∆T
0 0 0 I3 0
0 0 0 0 I3


, (4.21b)

Gins

k =



0 0 0 0
R̂n

bk
∆T 0 0 0

0 I3∆T 0 0
0 0 I3

√
∆T 0

0 0 0 I3
√
∆T


. (4.21c)

Here, ŝk = s̃k − ôak and ∆φ̂k = (ω̃k − ôωk )∆T .

4.3.3 Magnetic Field Subsystem Error State Dynamics

To the first order, the errors in (4.13) propagate according to

δθk+1 = A†
[
B(ψ̂k) d

dψk

(
B(ψ̂k)θk

)] [δθk
δψk

]
+ wθ

k , (4.22a)
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where

δψk = ψk − ψ̂k . (4.22b)

However, instead of expressing the error development in terms of δψk , we would
like to express it in terms of the orientation error εk , velocity error δvn

k , accelerom-
eter bias estimation error δoak , and gyroscope bias estimation error δoωk . To do this,
note that from (4.9b) we have

∆p̂
bk
k = R̂

bk
n ∆T (v̂n

k + gn∆T /2) + ŝk t
2
s /2, (4.23a)

where
R̂

bk
n = (I3 − [εk]∧)−1R

bk
n , (4.23b)

which gives that

δ∆pk =∆pbk
k − ∆p̂

bk
k

≈ − [εk]∧R̂bk
n ∆T (v̂n

k + gn∆T /2) + R̂
bk
n δvn

k∆T

=[R̂bk
n ∆T (v̂n

k + gn∆T /2)
︸���������������������︷︷���������������������︸

η(R̂
bk
n ,v̂n

k )

]∧εk + R̂
bk
n δvn

k∆T .
(4.24)

Here, the second and higher-order error terms have been neglected. Moreover, it
holds that

δφk = ∆φk − ∆φ̂k = −(δoωk + wω
k )∆T . (4.25)

Bringing it all together gives the following expression for the magnetic field
subsystem error state propagation

δθk+1 = Fθ
k δx̂k + Gθ

k

[
wins

k
wθ
k

]
, (4.26a)

where

Fθ
k = A†

[
B(ψ̂k) J1 J2

]
C(x̂k), (4.26b)

Gθ
k =

[
0 − A†J2∆T 0 0 Iκ

]
. (4.26c)

Here,

J1 =
d

d∆pk

(
B(ψ̂k)θk

)
, (4.26d)

J2 =
d

d∆φk

(
B(ψ̂k)θk

)
, (4.26e)

and

C(x̂k)=


0 0 0 0 0 Iκ
0 R̂

bk
n ∆T [η(R̂bk

n , v̂n
k )]∧ 0 0 0

0 0 0 0 −I3∆T 0

 . (4.26f)



56 4 The Magnetic Field-Aided Inertial Navigation System

Combining (4.21) and (4.26) gives the complete state-space model of the error
state, i.e.,

δxk+1 = Fkδxk + Gkwk, (4.27a)

δyk = Hδxδxk + ek, (4.27b)

where

Fk =
[
F ins

k 0
Fθ
k

]
, Gk =

[
Gins

k 0
Gθ
k

]
, (4.27c)

Hδx =



03×15 Φ(rm1
)

...
...

03×15 Φ(rmN
)

 . (4.27d)

Here δyk � yk − Hx̂k .
The ESKF can then be applied to (4.27) to estimate state, the detailed algo-

rithm is listed in Algorithm 4.

4.3.4 Adaption of the Measurement Noise Covariance

As previously mentioned, the polynomial magnetic field model is not perfect.
The model imperfections will vary with the complexity of the magnetic field and
the covariance Rk should vary accordingly. One possibility to make Rk adapt to
the complexity of the field is to assume Rk = σ2

k I3N and then fit the magnetic-field
model to the current observations yk and estimate σ2

k from the residual. That is,
σ2
k is estimated as [33]

σ̂2
k =

1
3N
‖(I3N − XX†)yk‖2, (4.28a)

where X is given by

X =



Φ(rm1
)

...
Φ(rmN

)

 . (4.28b)

Note that this adaption was not used in the following simulations but in the
real-world experiments. The reason is that real-world magnetic fields are more
complex and difficult to be represented by the polynomial model.

4.4 Evalutation

To evaluate the performance of the magnetic field-aided INS, Monte Carlo simu-
lations were conducted.
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Figure 4.4: The navigation state error and uncertainty.

4.4.1 Simulation Setup and Evaluation Metrics

The magnetic field data was collected using a magnetometer within a volume of
approximately 4 m3 in the room shown in Figure 4.2. A high-order dipole refer-
ence model was then fitted to the data. The field of the resulting reference model
is shown in Figure 4.4a. Using the reference model, 1000 Monte Carlo simula-
tions where a sensor array moved along a 60-second spiral trajectory through
the field, were conducted. During the spiral motion, the Euler angles represent-
ing body frame orientation were changing at a constant rate. The body frame
pose trajectory is shown in Figure 4.4b. The geometry of the simulated array was
similar to the one shown in Figure 1.1. That is, the array consisted of 30 mag-
netometers placed in a 6 times 5 grid with 64 mm and 55 mm spacing in the x-
and y-axis directions, respectively. For comparison, during the first 20 seconds
position measurements were also provided, making the system a position and
magnetic field-aided INS. Then the position measurements were removed, leav-
ing only magnetometer array measurements available for the last 40 seconds. The
settings used in the simulation are summarized in Table 4.1.

The root mean square error (RMSE) of the estimates and perceived uncertainty
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Table 4.1: Parameter settings used in the simulations

Parameter Description Value Unit
Σa accelerometer noise covariance 0.052I3 m/s2

Σω gyroscope noise covariance 0.12I3
◦/s

Σoa accelerometer bias noise covariance (10−8)2I3 m/s2

Σoω gyroscope bias noise covariance (10−8)2I3
◦/s

Σθ coefficient noise covariance manually tuned -
b(s) initial accelerometer bias N (0, 0.12I3) m/s2

b(ω) initial gyroscope bias N (0, 0.052I3) ◦/s
σe st.d. of magnetometer noise 0.01 µT
σp st.d. of position measurement noise 0.01 m
pn

0 initial position [0, 1, 0]T m
vn

0 initial velocity [1, 0, 0]T m/s
q0 initial orientation [1, 0, 0, 0]T -
oa0 initial accelerometer bias estimate [0, 0, 0]T m/s2

oω0 initial gyroscope bias estimate [0, 0, 0]T ◦/s
θ0 initial coefficients estimate X†y0 -
l the order of polynomial model 2 -

is calculated as

RMSE =

√√√
1

Nsim

Nsim∑

i=1

‖ρ̂k,i − ρk,i‖2,

perceived uncertainty =

√√√
1

Nsim

Nsim∑

i=1

P
ρ
k,i ,

(4.29)

Here ρ denotes the quantity for which RMSE is computed, Nsim is the number
of simulations, and the subscript k and i denote the timestep and index of the
simulation, respectively. Furthermore, P

ρ
k,i denotes the covariance of the poste-

rior estimate of the quantity ρ. Lastly, the average normalized estimation error
squared (ANEES) was also calculated as in [34].

4.4.2 Simulation Results and Discussion

The results from the Monte Carlo simulations are shown in Figure 4.5–4.8. From
the figures, the following can be observed. Firstly, during the first 20 seconds,
the position error and associated uncertainty are very small, which is expected
as position measurements were provided during this period. However, when the
position aiding is removed after 20 seconds the position error grows much slower
for the magnetic field-aided INS than for the stand-alone INS. This confirms the
effectiveness of the proposed method. The reduction in the position error growth
rate is from cubic to linear in time. Secondly, the velocity and orientation RMSEs
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Table 4.2: Information about the datasets

Data Length*(m) Duration*(s) Avg. height (m) Board orientation
LP-1 138.72 272 0.49 parallel
LP-2 167.07 286 0.52 parallel
LP-3 194.41 332 0.55 parallel
NP-1 136.23 177 0.85 parallel
NP-2 134.66 165 0.84 parallel
NP-3 137.76 154 0.79 parallel
NT-1 164.62 185 0.73 tilted
NT-2 137.87 151 0.74 tilted

* Including the initial part of the trajectory where the position-aiding is turned on.
LP: low height and parallel NP: normal height and parallel NT: normal height and tilted.

are consistent with the perceived uncertainty, and all sensor bias RMSEs converge
in the end. Thirdly, the plot of polynomial coefficient error also suggests that the
second-order polynomial model is sufficient to model the magnetic field. Finally,
the calculated ANEES remains below the lower bound of the 99% interval except
for the transience in the beginning, indicating the filter is conservative. One pos-
sible cause is that the process noise covariance, which corresponds to the random
changes to polynomial model coefficients, was not tuned well enough to match
the true changes. Currently, the process noise of the polynomial model coeffi-
cients is assumed to be white and the covariance matrix fixed, the variance of
which is set to approximately (by visual inspection) the variance of the predic-
tion error given true coefficients at two consecutive timesteps. In practice, model
error grows along with the displacement between two timesteps and there may
exist a correlation in process noise, hence, it may need to be adjusted accordingly.

4.4.3 Real-world Experiment Setup

The data collection was in the Visionen arena at Linköping University, see Figure
4.2. The Visionen arena is a large modern research arena with an indoor posi-
tioning system with millimeter-level accuracy. It provided the ground truth for
evaluation, i.e., the position and rotation of the sensor array w.r.t. the navigation
frame.

To evaluate the proposed method multiple experiments were conducted. In
each experiment, the magnetometer array was first sitting still on the ground for
a few seconds and then picked up by a person. The person then held it in his/her
hands parallel to the ground or slightly tilted, see in Figure 4.9, and walked in
squares for a few laps before putting the board back on the ground. The true
trajectory of the array was measured using a camera-based motion-tracking sys-
tem. In total 8 datasets were recorded. The main characteristics of the different
datasets are summarized in Table 4.2.
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Figure 4.5: The navigation state error and uncertainty. The red line shows
the RMSE of the filter estimate with magnetic-field aiding, and the gray area
shows the perceived uncertainty of the filter.



4.4 Evalutation 61

0 10 20 30 40 50 60

time [s]

0

0.005

0.01

Acceleration bias error x-axis

0 10 20 30 40 50 60

time [s]

0

0.005

0.01

Acceleration bias error y-axis

0 10 20 30 40 50 60

time [s]

0

0.005

0.01

Acceleration bias error z-axis

(a) Accelerometer bias estimation er-
ror and uncertainty.

0 10 20 30 40 50 60

time [s]

0

0.02

0.04

0.06

Gyroscope bias error x-axis

0 10 20 30 40 50 60

time [s]

0

0.02

0.04

0.06

Gyroscope bias error y-axis

0 10 20 30 40 50 60

time [s]

0

0.02

0.04

0.06

Gyroscope bias error z-axis

(b) Gyroscope bias estimation error.

Figure 4.6: The IMU bias state error and uncertainty. The red line shows the
RMSE of the filter estimate, and the gray area shows the perceived uncer-
tainty of the filter.

Coefficient error

time [s]

e
rr

o
r

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

0 50

10
-2

10
0

Figure 4.7: Coefficient estimation error and uncertainty. The red line shows
the RMSE of the filter estimate and the gray area shows the perceived uncer-
tainty of the filter. The reference values of θk were calculated by fitting the
model (4.4) to the generated field.



62 4 The Magnetic Field-Aided Inertial Navigation System

Figure 4.8: Average normalized estimation error squared.
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Figure 4.9: Sensor board orientation
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4.4.4 Real-world Experiment Results and Discussion

The datasets were processed with three algorithms: a stand-alone INS; the pro-
posed magnetic field-aided inertial navigation system (MAINS) algorithm, and
the method proposed in [35]. The positions measured by the motion-tracking
system were first made available to all algorithms for 60 seconds to calibrate IMU
biases and stabilize state estimates. Then all systems operated without position
aiding for the rest of the trajectory. This is similar to the scenario of a user coming
into a building where GPS signals are lost. Since the method in [35] by default
is designed to use 5 magnetometers, the same sensor configuration (the left in
Figure 4.10) as in [35] was used when comparing the two algorithms; only the
performance during the non-position-aiding part of the trajectory was evaluated.
An example of the estimated trajectories estimated by the three algorithms and
the corresponding positional errors are plotted in Figure 4.11. Since the MAINS
algorithm supports using other sensor configurations than the square configu-
ration, the performance of the proposed algorithm was also evaluated using all
the sensors in the array (see Figure 4.10). An example of the trajectory estimated
when using all sensors is shown in Figure 4.12. The results, in terms of root mean
square (RMS) position and velocity errors, from processing all 8 datasets with the
different sensor configurations and algorithms are summarized in Table 4.3. The
position errors at the end of the trajectories are also shown.

It can be seen from Figure 4.11 that both the MAINS and the method in [35]
output a trajectory with a similar shape as the true trajectory, while the INS tra-
jectory quickly drifted away. The same conclusion can be drawn from the hori-
zontal and vertical error plots. As expected the position error of the INS grows
much faster than those of the other two methods. Looking at the results in Table
4.3, it shows that both the MAINS and the method [35] achieved superior perfor-
mance in terms of horizontal error, vertical error, and speed error, compared to
the stand-alone INS. However, the MAINS has a consistently lower speed error
than the method [35] on all datasets. Furthermore, the MAINS has, in general,
a lower average horizontal error, which is consistent with the observation of the
trajectory shown in Figure 4.11. In terms of vertical error, the method [35] per-
formed poorly on the datasets where the board was tilted, while the MAINS had
larger errors on the datasets where the board was close to the ground. The reason
for [35] performing worse is that when the board is tilted (so is the body frame),
the speed errors in all three axes contributed to a larger vertical error, compared
to the case when the board is flat and the vertical error comes mostly from the
speed error in the z-axis. Meanwhile, the reason why the MAINS produced trajec-
tories with a large vertical drift when the board was close to the ground is that the
magnetic field there was too complex for the polynomial model, which resulted
in large fitting residuals and thus large innovations in filtering pulling the esti-
mate away from what it should be. Comparing the performance of the MAINS

algorithm with the two different sensor configurations, the benefit of using more
sensors is apparent — Vertical error was significantly reduced, and both the hor-
izontal and vertical error at the end of the trajectory were less than 3 meters for
most trajectories.
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Figure 4.10: Sensor configurations used in the experiments. Left: Square
configuration. Right: Rectangular configuration.

To help readers better understand the magnetic field in which the experi-
ments were conducted and the full potential of the MAINS algorithm, the tra-
jectory estimated by the MAINS algorithm with rectangular sensor configuration
is plotted on top of a magnetic field magnitude plot, as shown in Figure 4.12. It
can be seen that the magnitude variance along the trajectory is around 8 µT, and
the gradient varies. The MAINS is capable of producing a trajectory that is very
close to the true one, and more importantly, the positional error is consistently
reflected by the uncertainty. One thing that may raise readers’ interest is why the
trajectory seems to always “bend inwards” near the top left corner. We cannot
offer a precise explanation now, but one of the possibilities is that the MAINS is
sensitive to errors in magnetometer calibration parameters, which are difficult to
eliminate.
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from a stand-alone INS, the MAINS algorithm, and the method proposed in
[35]. The square sensor configuration was used in this experiment.
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Figure 4.12: Illustration of the estimated and the true trajectory, as well as
the magnetic field magnitude along the trajectory. The magnetic field mag-
nitude plot is created by the interpolated magnetic field measurements using
a Gaussian process model.
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Appendix

4.A The Explicit Form of Φ(r)

The 1st order Φ(r) is given by

Φ(r) =


0 0 1 0 0 rz ry 2rx
0 1 0 rz 2ry 0 rx 0
1 0 0 ry −2rz rx 0 −2rz

 . (4.30)

The 2nd order Φ(r) is given by

Φ(r) =


0 0 1 0 0 rz ry 2rx 0 0 ry rz r2

y − r2
z 2rxrz 2rxry 3r2

x − 3r2
z

0 1 0 rz 2ry 0 rx 0 2ry rz 3r2
y − 3r2

z rxrz 2rxry 0 r2
x − r2

z 0
1 0 0 ry −2rz rx 0 −2rz r2

y − r2
z −6ry rz rxry −2rxrz r2

x − r2
z −2ry rz −6rxrz

 .

(4.31)
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5
The Observability-Constrained

Magnetic Field-Aided Inertial
Navigation System

A consistent estimate of position and orientation uncertainty, i.e., the perceived
uncertainty that truly reflects the error in the estimate, is essential for localiza-
tion, especially when the localization result should fuse with information from
other systems or be used in control or decision systems. This chapter discusses
the inconsistent perceived yaw uncertainty by the magnetic field-aided INS pre-
sented in Chapter 4. To overcome this inconsistency an observability-constrained
magnetic field-aided INS is presented.

This chapter is an adaption of the material in

Chuan Huang, Gustaf Hendeby, and Isaac Skog. An observability-
constrained magnetic field-aided inertial navigation system — extended
version. arXiv preprint arXiv:2406.02161, abs/2406.02161, 2024. (Ac-
cepted to IPIN 2024)

5.1 Inconsistent Perceived Uncertainty in Yaw

In an odometry-aided INS, such as a magnetic field odometry-aided INS [1, 2, 35–
38], the uncertainty about the position and yaw of the navigation platform can,
if the errors in the initial state are uncorrelated, never become smaller than the
initial position and yaw uncertainty. This is because odometry and inertial mea-
surements only provide relative motion information. Hence, for any algorithm
used to estimate the navigation state xk in an odometry-aided INS it should hold
that

P
p
k � P

p
0 and P

φ
k � P

φ
0 , (5.1)

where P
p
k and P

φ
k denote the covariance of the, at time k, estimated position and

yaw states, respectively.

69
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0 1 2 3 4 5 6 7 8

3

3.5

4

4.5

5

5.5

Perceived uncertainty in yaw

Figure 5.1: Example of the perceived yaw uncertainty calculated by the EKF

used to realize magnetic field-odometry-aided INS in [2]. Also shown is the
perceived yaw uncertainty of the proposed observability-constrained EKF

algorithm.

However, the perceived yaw uncertainty in the MAINS will fall below the
initial yaw uncertainty. In Figure 5.1, where the square roots of P

φ
0 and P

φ
k as

calculated by the EKF in the MAINS are shown. As seen from the figure the
square root of P

φ
k falls below that of P

φ
0 . Hence the inequality in (5.1) does not

hold and the covariance estimate of the EKF is inconsistent. The inconsistency is
because the EKF linearizes the system model around the estimated state, which
causes the yaw to be perceived as observable even though it is not. This type of
inconsistency effect has been observed in multiple EKF-based implementations of
odometry-aided INS, see e.g., [39–41], and is troublesome if the yaw information
should be fused with information from other systems or be used in a control or
decision system. Next, the observability-constrained EKF [40], which aims to fix
this inconsistency, is discussed.

5.2 Preserve Observability Properties

The behavior of odometry-aided INS is commonly described by a nonlinear state-
space model of the following form

xk+1 = f (xk, uk, wk), x ∈ Rnx ,

yk = h(xk) + ek, y ∈ Rny .
(5.2)

Here f and h are the nonlinear functions, and uk denotes the control input. Fur-
ther, wk and ek denote the process and measurement noise, respectively. They are
assumed to be white noise with covariance Qk and Rk , respectively.

Several approaches have been proposed to preserve observability properties
of the model (5.2) in EKF filtering, see [39, 40, 42–45], one of which is called
the observability-constrained EKF [40]. The basic idea of the method in [40] is
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to modify the Jacobians used in the EKF, such that the basis of the unobservable
subspace, evaluated at state estimates, lies in the nullspace of the observability
matrix evaluated at state estimates of EKF. The unobservable subspace is a sub-
space of the nullspace of the local observability matrix [30] associated with (5.2),
i.e. the observability matrix constructed as

Ōk �



H̄k
H̄k+1Φ̄(k + 1, k)

...
H̄k+nx−1Φ̄(k + nx − 1, k)


. (5.3a)

Here x̄k:k+nx−1 denotes the nominal trajectory, which is the solution of (5.2) with
the control sequence ūk:k+nx−1 and the process noise turned off. Further,

Φ̄(k + i, k) = F̄k+i−1F̄k+i−2 · · · F̄k , (5.3b)

where

H̄k =
∂h
∂xk

∣∣∣∣∣
xk=x̄k

and F̄k =
∂f

∂xk

∣∣∣∣∣ xk=x̄k
uk=ūk
wk=0

. (5.3c)

The unobservable subspace Nk can be represented as

Nk = span{N (x̄k)}, (5.4a)

where N : Rn → Rn×p is a matrix valued function such that ŌkN (x̄k) = 0, and
p denotes the dimension of the unobservable subspace. That is, the columns of
N (x̄k) are basis vectors that span the unobservable subspace. The basis of the
unobservable subspace is not unique. Hence, right multiplying N (x̄k) with any
full-rank matrix Ek ∈ Rp×p will not change the span of the basis. That is,

span{N‡(x̄k)} = span{N (x̄k)}, (5.5a)

where
N‡ : Rn → Rn×p and N‡(xk) = N (xk)Ek . (5.5b)

This property, which was not used in [40], will be important when modifying
the Jacobians, as it reduces the changes made to the Jacobians to preserve the
observability properties.

Once the basis vectors of the unobservable subspace are determined, they are,
as will be described next, used to modify the Jacobians used in the EKF. Let

F̂k =
∂f

∂xk

∣∣∣∣∣ xk=x̂k|k
uk=ûk
wk=0

and Ĥk =
∂h
∂xk

∣∣∣∣∣
xk=x̂k|k−1

(5.6)

be the Jacobians used in the unmodified EKF. Here x̂k|k and x̂k|k−1 denote the pos-
terior and prior estimate of the state, i.e., the estimate of xk given measurements
up to time k and k − 1, respectively. These Jacobians are modified by making the
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Algorithm 5 Observability-constrained EKF

Input: {ūk , yk}Lk=1
Output: {x̂k|k , Pk|k}Lk=1
Initialisation : estimated state x̂1|0, covariance matrix P1|0
For k = 1 to L do

Measurement update:
Calculate Ĥk using (5.6) and find H̃∗k by solving (5.7b)
Sk = H̃∗kPk|k−1(H̃∗k)� + Rk

Kk = Pk|k−1(H̃∗k)�S−1
k

x̂k|k = x̂k|k−1 + Kk(yk − h(x̂k))
Pk|k = Pk|k−1 − KkH̃

∗
kPk|k−1

Time update:
x̂k+1|k = f (x̂k|k , ūk , 0)
Calculate F̂k using (5.6) and find F̃∗k by solving (5.7a)

Gk = ∂f
∂wk

∣∣∣
xk=x̂k|k ,uk=ūk ,wk=0

Pk+1|k = F̃∗kPk|k(F̃∗k)� + GkQkG
�

end for

smallest possible (in terms of the Frobenius norm) changes to their entries while
still preserving the observability properties. This is done by solving the following
optimization problems.

F̃∗k = arg min
F̃k

‖F̃k − F̂k‖2F

s.t. span{N (x̂k+1|k)} = span{F̃kN (x̂k|k−1)},
(5.7a)

and
H̃∗k = arg min

H̃k

‖H̃k − Ĥk‖2F

s.t. H̃kN (x̂k|k−1) = 0.
(5.7b)

Here ‖ · ‖F denotes the Frobenius norm. The constraints in (5.7a) and (5.7b) guar-
antee that the unobservable subspace is preserved and that the unobservable
directions cannot be observed. The observability-constrained EKF algorithm is
shown in Algorithm 5.

5.3 Application to the Magnetic Field-Aided INS

The method presented in Section 5.2 will next be used to modify the EKF algo-
rithm used in the MAINS to address the inconsistency illustrated in Figure 5.1.
Unless otherwise stated, we adhere to the notations and definitions established
in previous chapters, particularly those found in Chapter 4.
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5.3.1 State-Space Model

Consider the simplified MAINS where IMU biases are not included in the state
vector. The IMU biases are excluded as they only complicate the forthcoming
observability analysis and biases never improve the observability. Later, when
evaluating the proposed method the biases are included.

Let the state vector xk , without IMU biases, be defined as

xk �
[
(pn

k )� (vn
k )� (qk)� (θk)�

]�
. (5.8)

Based on the state-space model (4.17) developed in Chapter 4, the state dynamics
of the MAINS excluding the bias states is given by

xk+1 = f (xk, uk, w
θ
k ), (5.9a)

where

f (xk, uk, w
θ
k ) =



pn
k + vn

k∆T + (Rksk + gn)∆T
2

2
vn
k + (Rksk + gn)∆T
qk ⊗ Expq (ωk∆T )
A†B(ψk)θk + wθ

k


. (5.9b)

Here uk � [s�k ω�k ]� is the system input. Rk ∈ SO(3) denotes the orientation ma-
trix corresponding to qk , i.e., the orientation matrix of the b-frame. Furthermore,
ψk ∈ R6 denotes the pose change between time k and k + 1, i.e.,

ψk =
[
R�k ∆T (vn

k + gn∆T /2) + sk∆T
2/2

ωk∆T

]
, (5.10)

where the first and second elements encode the translation and orientation change,
respectively.

The measurements are from the magnetometer array, whose equation is given
by

yk = Hxk + ek, (5.11a)

where

H =



03×10 Hθ(r1)
...

...
03×10 Hθ(rm)


. (5.11b)

Here Hθ(ri ) ∈ R3×κ denotes the measurement matrix for magnetometer sensor
location ri , whose expression is given in Appendix 4.A. Further, m denotes the
number of magnetometer sensors.

5.3.2 Linearized Error State Model

Following the same linearization procedures as in Chapter 4, let δxk denote the
error state vector

δxk �
[
(δpn

k )� (δvn
k )� (εk)� (δθk)�

]�
. (5.12a)



74 5 The Observability-Constrained Magnetic Field-Aided Inertial Navigation System

Further, let x̄k denote the nominal state vector

x̄k �
[
(p̄n

k )� (v̄n
k )� (q̄k)� (θ̄k)�

]�
. (5.12b)

Given the measurement input ũk = [s̃�k ω̃�k ]�, the linearized error state dy-
namics is given by

δxk+1 = F̄kδxk + Ḡkwk, (5.13a)

where

F̄k =



I3 I3∆T 0 0
0 I3 −R̄k[s̃k]∧∆T 0
0 0 ExpR(ω̃k∆T )� 0
0 A† J̄k R̄

�
k ∆T A† J̄k[η(R̄k , v̄

n
k )]∧ A†B(ψ̄k)


, (5.13b)

ψ̄k =
[
R̄�k ∆T (v̄n

k + gn∆T /2)
ω̃k∆T

]
, (5.13c)

η(R̄k , v̄
n
k ) = R̄�k ∆T (v̄n

k + gn∆T /2), (5.13d)

J̄k =
∂B(ψk)θk

∆pk

∣∣∣∣∣
ψk=ψ̄k ,θk=θ̄k

. (5.13e)

Here s̃k ∈ R3 and ω̃k ∈ R3 denote the measured acceleration and angular veloc-
ity, respectively. Further, wk � [(wa

k)� (wω
k )� (wθ

k )�]� denote the process noise,
where wa

k ∈ R3 and wω
k ∈ R3 denote the acceleration and angular velocity mea-

surement noise, respectively. The explicit form of Ḡk is not given as it is relevant
in the observability analysis, interested readers can find it in Chapter 4.

The corresponding measurement model is given by

δyk = Hδxδxk + ek, (5.14a)

where

Hδx =



03×9 Hθ(r1)
...

...
03×9 Hθ(rm)


(5.14b)

and δyk � yk − Hx̄k .

5.3.3 Unobservable Subspace and Interpretations

Let

N (xk) �



I3 03×1
03×3 −[vn

k ]∧gn

03×3 R�k gn

0κ×3 0κ×1


, (5.15)

then the basis of the unobservable subspace associated with the linearized error
state model is given by the column vectors in N (x̄k). See Appendix 5.A for a
proof.
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The first three columns of N (x̄k) correspond to a body frame translation and
the last column with the first three corresponds to a navigation frame rotation
around the gravity vector. Interested readers can refer to Appendix 5.B to see
why they are interpreted as those effects. Note that the unobservable velocity
component is caused by the fact that the yaw angle cannot be determined. Thus
the direction of the velocity in the navigation frame is ambiguous.

5.3.4 Suggested Modifications of the Jacobians

Since the measurement model (5.14) is linear and Hδx fulfills the constraint in
(5.7b), it is left unmodified, i.e., H̃∗k = Hδx . Only the Jacobian involved in the
state transition, i.e.,

F̂k =



I3 I3∆T 0 0
0 I3 −R̂k[s̃k]∧∆T 0
0 0 ExpR(ω̃k∆T )� 0
0 A†Ĵk R̂

�
k ∆T A†Ĵk R̂

�
k ∆T [v̂n

k + gn ∆T
2 ]∧R̂k T̂ k+1

k


(5.16)

needs to be modified. Here the accent ·̂ denotes the posterior estimate of the
quantity and T̂ k+1

k � A†B(ψ̂k). Furthermore, the equality [Rξ]∧ = R[ξ]∧R�, R ∈
SO(3), ξ ∈ R3 is used.

Solving the optimization problem in (5.7a) is typically difficult, However, a
suboptimal solution can be obtained by narrowing the search space for F̃k and
transforming the constraint by selecting a specific set of transformations {Ek , Ek+1}
such that the basis vectors in the constraint are equal, i.e.,

N (x̂k+1|k)Ek+1 = F̃kN (x̂k|k−1)Ek . (5.17)

Since the goal is to make minimal changes to the original Jacobian F̂k but still
fulfill the constraints in (5.7a), the sub-blocks of matrices F̂k that are indepen-
dent of the linearization points are kept unchanged. Furthermore, the sub-block
T̂ k+1
k will not affect the constraint since the last κ rows of N (x̂k|k−1) are all zeros.

Hence, it is kept as it is. The remaining subblocks of F̂k must be modified to meet
the constraint in (5.7a). Therefore, the proposed modified Jacobian F̃k has the
structure

F̃k =



I3 I3∆T 0 0

0 I3 F̃
(1,2)
k 0

0 0 F̃
(2,2)
k 0

0 A† Ĵk R̂
�
k ∆T A† Ĵk R̂

�
k ∆T F̃

(3,2)
k T̂ k+1

k


, (5.18)

where F̃
(1,2)
k , F̃(2,2)

k , and F̃
(3,2)
k are the block matrices to be determined. Further,

transformations {Ek , Ek+1} are chosen as

Ek =
[
I3 ak
0 1

]
, Ek+1 =

[
I3 ak+1
0 1

]
. (5.19)
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Here ak, ak+1 ∈ R3 are column vectors. Then the optimization problem (5.7a) can
be written as

F̃∗k = arg min
F̃k

‖F̃k − F̂k‖2F (5.20a)

s.t. ak+1 = ak − [v̂n
k|k−1]∧gn∆T , (5.20b)

[v̂n
k+1|k]∧gn = [v̂n

k|k−1]∧gn − F̃(1,2)
k R̂�k|k−1gn, (5.20c)

R̂�k+1|kgn = F̃
(2,2)
k R̂�k|k−1gn (5.20d)

A† Ĵk R̂
�
k ∆T (−[v̂n

k|k−1]∧gn + F̃
(3,2)
k R̂�k|k−1gn) = 0 (5.20e)

These constraints are obtained by matching the entries on both sides of (5.17).
Since the constraints in (5.20) only contain one unique subblock of F̃k each,

the optimization problem in (5.20) can be split into three separate optimization
problems of the form

F̃∗
(i,2)

= arg min
F̃(i,2)

‖F̃(i,2) − F̂(i,2)‖2F ,

s.t. F̃(i,2)u = w.

(5.21)

Here F̂(i,2) denotes the matrix to be modified and u, w ∈ R3. For example, the
constraint (5.20c) corresponds to u = R̂�k|k−1gn, w = [v̂n

k|k−1 − v̂
n
k+1|k]∧gn. The opti-

mization problem has a closed-form solution [40]

F̃∗
(i,2)

= F̂(i,2) − (F̂(i,2)u − w)(u�u)−1u�. (5.22)

Note that in [40], the optimization problem set for F̃(2,2) is different, where F̃(2,2)

is constrained to be a rotation matrix and the object is to minimize the squared
norm of the difference of the quaternions corresponding to the rotation matrices.
In this paper, we also adopted this approach. Furthermore, when dealing with
(5.20e), we consider the term in the parenthesis to be 0, although in the general
case, it can be any vector in the nullspace of A† Ĵk R̂

�
k ∆T .

5.4 Experimental Evaluation

The proposed observability-constrained magnetic field-aided inertial navigation
system (OC-MAINS) algorithm is compared with the original MAINS algorithm.
Both algorithms are evaluated using Monte Carlo simulations and real-world
data. As a performance measure, RMSE is used to evaluate position and yaw
estimation errors. Furthermore, the perceived uncertainty of the estimate is com-
pared with the RMSE to evaluate consistency. Specifically, the covariance of the
yaw in ith simulation at timestep k is calculated as

P
φ
k,i = ∇yaw(q̂k,i )

�Pε
k,i∇yaw(q̂k,i ). (5.23)
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Here Pε
k,i ∈ R3×3 denote the block covariance matrix corresponding to the orien-

tation error. Furthermore, ∇yaw(q̂k,i ) ∈ R3×1 denotes the gradient w.r.t. the Euler
angles of the function that converts q̂k,i to the yaw angle.

5.4.1 Simulation Setup and Result

In the simulation, a sensor board, similar to that shown in Figure 1.1, moves
in squares of size 2 × 2 meters; see Figure 5.2a. The trajectory’s duration was
8 seconds and the data was sampled at 100 Hz. The IMU measurements were
generated as the true value corrupted by additive white noise and biases. The
magnetometer measurements were generated as the magnetic field from a multi-
dipole model corrupted by additive white noise. The magnitude of the simulated
magnetic field is shown in Figure 5.2a. In total, 50 simulations with independent
noise, bias, and initial state realizations, were used in the Monte Carlo simulation
evaluation. The same filter parameters were used in both algorithms.

The results are shown in Figure 5.2b and Figure 5.2c. The figures show that
the proposed OC-MAINS algorithm generally has a smaller position and yaw
RMSE. Further, the perceived uncertainty of the yaw estimate is more consistent
with the true uncertainty, see also in Figure 5.1. Concerning the position esti-
mates, even though the perceived uncertainty of the OC-MAINS is somewhat
more consistent with the true uncertainty of the position estimates, significant
inconsistency still exists. However, it is worth noting that the perceived uncer-
tainty of OC-MAINS is always higher than the initial uncertainty, thus satisfying
the condition in (5.1). The original MAINS algorithm does not meet this condi-
tion.

5.4.2 Experimental Setup and Result

In the experiment, a person held the sensor board in Figure 1.1 parallel to the
ground, and walked in squares for a few laps. The true trajectory was measured
using a camera-based motion-tracking system. The same filter parameters were
used in both algorithms.

The results are shown in Figure 5.3b and Figure 5.3c. From Figure 5.3c it can
be seen that the yaw error of OC-MAINS is significantly lower than that of the
original MAINS. Also, it can be seen that the perceived and true yaw uncertainty
agree when using the OC-MAINS algorithm. From Figure 5.3b it can be seen that
the position error of the original MAINS and OC-MAINS algorithms are about
the same, but the OC-MAINS algorithm has slightly better performance in the y-
axis direction. For the OC-MAINS algorithm, the perceived and true uncertainty
agrees in the y- and z-axis directions, whereas in the x-axis there is a significant
inconsistency. This could result from imperfect IMU calibration. Similar to in
the simulations, the perceived uncertainty of OC-MAINS is always higher than
the initial uncertainty, thus satisfying the condition in (5.1).



78 5 The Observability-Constrained Magnetic Field-Aided Inertial Navigation System

(a) Estimated and true trajectory, and the
magnetic field magnitude.
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(b) Position RMSE (solid) and perceived
uncertainty (dashed).
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Figure 5.2: Monte Carlo simu-
lation results. The RMSE re-
sults are the average value calcu-
lated from 50 independent simu-
lations.
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(b) Position RMSE (solid) and perceived
uncertainty (dashed).
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Figure 5.3: Results from real-
world experiment. The RMSE re-
sults are the average value calcu-
lated from using 12 randomly se-
lected initialization states.



Appendix

5.A The Unobservable Subspace Basis

To derive the unobservable subspace basis for the system defined by (5.13) and
(5.14), F̄k is rewritten. Propagating the nominal state x̄k with ũk using (5.9b)
leads to

v̄n
k+1 = v̄n

k + R̄k s̃k∆T + gn∆T , (5.24a)

q̄k+1 = q̄k ⊗ Expq (ω̃k∆T ) . (5.24b)

By rearranging the terms and using the equality [Rξ]∧ = R[ξ]∧R�, where R ∈
SO(3) and ξ ∈ R3, the following holds

R̄k s̃
∧
k ∆T = [v̄n

k+1 − v̄
n
k − gn∆T ]∧R̄k , (5.25a)

ExpR(ω̃k∆T )� = R̄�k+1R̄k , (5.25b)

Let T̄ k+1
k � A†B(ψ̄k) and ∆p̄Gk = R̄k∆p̄k , then it holds that

A† J̄k R̄
�
k ∆T =

∂A†B(ψ̄k)θ̄k

∂∆p̄k
R̄�k ∆T =

∂T̄ k+1
k θ̄k

∂∆p̄Gk
∆T , (5.26a)

and

A† J̄k[η(R̄k , v̄
n
k )]∧ =

∂T̄ k+1
k θ̄k

∂∆p̄Gk
∆T [v̄n

k + gn∆T /2]∧R̄k . (5.26b)

Next, combining (5.25) and (5.26), then F̄k can be rewritten as

F̄k =



I3 I3∆T 0 0
0 I3 −[v̄n

k+1 − v̄
n
k − gn∆T ]∧R̄k 0

0 0 R̄�k+1R̄k 0

0
∂T̄ k+1

k θ̄k

∂∆p̄Gk
∆T

∂T̄ k+1
k θ̄k

∂∆p̄Gk
∆T [v̄n

k + gn∆T /2]∧R̄k T̄ k+1
k


, (5.27)
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The matrix Φ̄(l, k) can then, for l > k, be written as

Φ(l, k)=



I3 • • 0
0 I3 −[v̄n

l − v̄
n
k − gn(l − k)∆T ]∧R̄k 0

0 0 R̄�l R̄k 0

0
l−1∑
j=k

Dj

l−1∑
j=k

Dj [v̄
n
k + 2(j−k)+1

2 ∆Tgn]∧R̄k T̄ l
k


, (5.28a)

where

Dj =
∂T̄ l

k θ̄k

∂∆p̄Gj
∆T and T̄ l

k = T̄ l
l−1T̄

l−1
l−2 · · · T̄

k+1
k . (5.28b)

Here • denotes subblocks of no interest to the analysis.
Now, it can be verified that the columns of N (x̄k) in (5.15) are unobservable er-

ror states by multiplying every block row in Ōk with N (x̄k). Let Ō(s,l)
k � H

(s)
δx Φ̄(l, k),

where H
(s)
δx denotes the block row in Hδx corresponding to the s-th magnetometer.

For l = k,

Ō(k,k)
k =

[
03×3 03×3 03×3 Hθ(rs)

]
, (5.29)

and Ō(s,k)
k N (x̄k) = [03×3 03×1], which can be verified by simple calculation using

that Φ̄(k, k) = I .
For l > k,

Ō(s,l)
k = Hθ(rs)



03×3
l−1∑
j=k

Dj


�


l−1∑
j=k

Dj [v̄
n
k + 2(j−k)+1

2 ∆Tgn]∧R̄k


�

(T̄ l
k )�



�

(5.30)

and

Ō(s,l)
k N (x̄k) = Hθ(rms

)

0
l−1∑

j=k

Dj

(
−[v̄n

k ]∧gn +
[
v̄n
k +

2(j − k) + 1
2

∆Tgn
]∧
R̄k R̄

�
k gn

)

= Hθ(rms
)

0
l−1∑

j=k

Dj

(
−[v̄n

k ]∧gn + [v̄n
k ]∧gn +

[2(j − k) + 1
2

∆Tgn
]∧

gn
)

= [03×3 03×1] .
(5.31)

Here the equality [gn]∧gn = 0 is used in the last step.

Since Ō(s,l)
k N (x̄k) = 0 ∀s,∀l ≥ k then ŌkN (x̄k) = 0 and the column vectors of

N (x̄k) belong to the null space of Ōk .
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5.B Interpretation of the Unobservable Subspace

The error state vector can be seen as perturbations to the state vector. The proof
proceeds by applying a perturbation to the state and then calculating the result-
ing error state vector. If the error state vector lies in the space spanned by some
columns in N (x̄k) then those unobservable directions correspond to the perturba-
tion applied.

Suppose the initial true state x = [pn� vn� q� θ�]�, where the time index
will be dropped for brevity. Next, suppose that a translation ∆ ∈ R3 is applied to
the body frame. That will change the state to x′ = [(pn +∆)� vn� q� θ�]�. The
error state δx = [−∆� 0� 0� 0�]� lies in the space spanned by the first three
columns in N (x̄k). Thus, the perturbation implied by the first three columns is a
body frame translation.

Next, suppose the navigation frame is rotated around the gravity vector by an
angle c ∈ [0, 2π) and denote the new navigation frame as the n′-frame, then the
changed state x′ becomes

x′ =



Rn′
n · pn

Rn′
n · vn

q{Rn′
n } ⊗ q
θ


, Rn′

n = (R{c gn})�, (5.32)

where Rn′
n denotes the orientation matrix that transforms the coordinate in n-

frame to n′-frame, R{c gn} denotes the orientation matrix corresponding to the
axis-angle representation c gn, and q{Rn′

n } denotes the quaternion corresponding
to the orientation matrix Rn′

n .
Let ε ∈ R3 denote the orientation error, i.e. the orientation difference in x and

x′ , and c be infinitesimally small. Recalling the definition of orientation error
and using (R{c gn})� ≈ I3 − [c gn]∧, it holds that

R ≈ (Rn′
n ·R) · (I3 + [ε]∧) = (R{c gn})� ·R · (I3 + [ε]∧)

≈ (I3 − [c gn]∧)R(I3 + [ε]∧),
(5.33)

where R is the orientation matrix corresponding to the quaternion q. Neglecting
the second-order term, then it holds that

R ≈ R + R[ε]∧ − [c gn]∧R, (5.34)

which leads to
[c gn]∧ ≈ R[ε]∧R� = [Rε]∧. (5.35)

Therefore,
ε = cR�gn. (5.36)

The error state for the position is calculated as

pn − Rn′
n · pn = pn − R�{c gn} · pn

≈ (I3 − (I3 − [c gn]∧)) · pn,

= −c[pn]∧gn,

(5.37)
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where [gn]∧pn = −[pn]∧gn is used. Similarly, the error state for the velocity is
−c[vn]∧gn. Therefore, the error state

δx = c



−[pn]∧gn

−[vn]∧gn

R�gn

0


= c


−



I3
03×3
03×3
0κ×3


[pn]∧gn +



0
−[vn]∧gn

R�gn

0




(5.38)

lies in the space spanned by all columns, so they correspond to a navigation frame
rotation around the gravity vector.



6
Concluding Remarks

This thesis presents an emerging indoor localization technology: the magnetic
field-aided INS. Both the theory and practicality of developing such type of sys-
tems are discussed in this thesis.

6.1 Conclusions

The results in Chapter 3 and 4 demonstrate that it is feasible to build a mag-
netic field-aided INS using low-cost sensors given the sensors are well-calibrated.
Further, the experimental results show that the localization accuracy of the sys-
tem allows the exploration phase of current magnetic field SLAM systems to be
greatly extended, which indicates the possibility of building self-contained mag-
netic field SLAM systems. Moreover, the results in Chapter 5 indicate that apply-
ing specific observability constraints can reduce yaw inconsistencies and improve
the localization system’s accuracy. This is fundamental if the system is to be incor-
porated into some larger localization or control systems because only consistent
estimates can be safely used.

6.2 Future work

One intriguing avenue for future research involves integrating the proposed poly-
nomial model with existing Gaussian process models used in magnetic field SLAM
systems. While Gaussian processes excel in modeling large-scale magnetic field
variations, the polynomial model maintains a small-scale map, i.e., the polyno-
mial coefficients, that is accurate around the sensor board. The challenge here is
to ensure that the updates of the large-scale and small-scale maps are seamless
and mutually beneficial.
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84 6 Concluding Remarks

Addressing inconsistency issues remains a critical research objective. The cur-
rent observability-constrained extended Kalman Filter method, while commonly
used, may not always provide optimal solutions. Exploring alternative state-
space model modifications or entirely different filtering paradigms such as the
invariant extended Kalman filter [46] or equivalent filter [47] could potentially
offer enhanced consistency and accuracy in state estimation.
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