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Abstract—A tightly integrated magnetic-field aided inertial
navigation system is presented. The system uses a magnetometer
sensor array to measure spatial variations in the local magnetic-
field. The variations in the field are — via a recursively updated
polynomial magnetic-field model — mapped into displacement
and orientation changes of the array, which in turn are used to
aid the inertial navigation system. Simulation results show that
the resulting navigation system has three orders of magnitude
lower position error at the end of a 40 seconds trajectory as
compared to a standalone inertial navigation system. Thus, the
proposed navigation solution has the potential to solve one of the
key challenges faced with current magnetic-field simultaneous
localization and mapping (SLAM) systems — the very limited
allowable length of the exploration phase during which unvisited
areas are mapped.

Index Terms—inertial navigation, magnetic field, polynomial
model, error state Kalman filter

I. INTRODUCTION

The magnetic-field is omnipresent and stable vector field,
which can be a highly informative and reliable source for local-
ization if measured accurately [1]; an example of the magnetic-
field variations inside a building is shown in Fig. 1. The
distorted earth magnetic-field and magnetized materials in the
environment provide fingerprints highly correlated to position.
Hence, the magnetic-field is a viable and robust information
source for localization in Global Navigation Satellite System
(GNSS) denied environments, such as indoors and underwater
[2], [3].

Indeed, magnetic-field based simultaneous localization and
mapping (SLAM), where magnetic-field measurements are
fused with the navigation solution from a inertial navigation
system (INS), has turned out be one of the most promising
techniques for scalable indoor localization [4]. However, when
using low-cost inertial sensors the error growth rate of the iner-
tial navigation system is typically in the order of 10 meters per
minute [5]. Therefore, the allowable length of the exploration
phases, where new areas are mapped, is extremely limited
when using low-cost inertial sensors. Hence, to increase the
usability of current magnetic-field based SLAM solutions we
need robust magnetic-field odometry techniques that reduce
navigation error drift rate.

This work has been funded by the Swedish Research Council (Veten-
skapsrådet) project 2020-04253 ”Tensor-field based localization”.

Fig. 1. Illustration of the magnetic-field magnitude variations inside a
building. The field was measured with an magnetometer array, whose location
was tracked by camera-based tracking systems. The field measurement was
then interpolated and the field magnitude was projected on the floor.

Thanks to the recent sensor technology development, high-
performing and affordable magnetometer vector-sensor arrays
can be constructed. These arrays allows for snap-shot “images”
of the magnetic-field to be collected, which in turns enables
faster and richer feature learning in the SLAM process.
Further, magnetometer array measurements must comply with
easy to model physical laws. This allows us to model them in
such a way that position translation and orientation change are
encoded, making it perfect for complementing or correcting
an INS. To that end, in this paper, we present a method for
tightly integrated magnetic-field aided inertial navigation. The
resulting navigation system has, compared to a pure inertial
navigation system, an significantly reduced error growth rate.
Hence, the proposed navigation method has the potential to
greatly extend the allowable length of the exploration phases
in magnetic-field based SLAM system.

A. Related work

The idea behind magnetic-field based odometry is that
the velocity of a magnetometer vector sensor array can be



estimated via the differential equation

dM
dt

= M× ω +
dM
dr

v. (1)

The equation relates the rate of change of the magnetic field
M ∈ R3 to the rotation rate of the array ω ∈ R3, the Jacobian
of the magnetic field with respect to position dM

dr ∈ R3×3,
and the velocity v ∈ R3. With a magnetometer array, such as
that in Fig. 2, the Jacobian can be estimated from spatially
distributed measurements and the velocity can be determined.

In [6]–[10], the differential equation (1) was used to develop
magenetic-field aided INS solutions. The resulting imple-
mentations achieve much lower error growth rate compared
to stand-alone inertial navigation systems. In a more recent
work [11], a model-based approach to magnetic-field odometry
was proposed, in which a polynomial model describing the
local magnetic-field was developed. In the proposed model-
based odometry method the velocity was viewed as a model
parameter to be estimated, which allowed estimation theory to
be used to analyse the problem. Presented experiential results
showed that the model-based odometry approach achieved a
higher accuracy compared to approaches based upon directly
solving (1). The model-based odometry approach was further
explored in [12], where it was used to estimate both the
translation and orientation change of the array.

B. Contributions

We will in this paper, encouraged by the promising re-
sults on model-based magnetic-field odometry shown in [12],
present a method for model-based magnetic-field aided inertial
navigation. More precisely, we will: (a) derive a tightly inte-
grated magnetic-field aided inertial navigation system using
a recursively updated polynomial model; and (b) evaluate its
performance using Monte Carlo simulations. All the data and
code used to produce the presented results are made available
at https://github.com/Huang-Chuan/magnetic-field-odometry.

II. SYSTEM MODELING

A moving platform with an inertial measurement unit (IMU)
and a magnetometer sensor array consisting of N sensors
is considered; see Fig. 2. Our focus is on estimating the
position, velocity, and orientation of the platform from the
data generated by the sensors. To that end, in this section a
state-space model that can be used to fuse the inertial and
magnetic-field measurement will be derived.

A. Inertial Navigation Equations

The navigation equations for an inertial navigation system
using low-cost sensor and moving at moderate velocities are
given by [13]

pnk+1 = pnk + vnkTs +Rnbk(s
bk
k + gn)

T 2
s

2
(2a)

vnk+1 = vnk +Rnbk(s
bk
k + gn)Ts (2b)

q
nbk+1

k+1 = qnbkk ⊗ expq(∆ϕk), (2c)
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Fig. 2. Example of magnetic-field quiver plot, that is, a magnetic-field image,
overlaid on the magnetic-field sensor array used to capture the field. Two
arrows are missing due to broken sensors.

where

∆ϕk = ωbkk Ts (2d)

Rnbk = expR(q
nbk
k ). (2e)

Here the superscript and subscript n and bk denote the
navigation frame and body frame at timestep k, respectively.
pnk ∈ R3, vnk ∈ R3, and qk ∈ SO(3) (3D rotation group)
denote the position, velocity, and orientation (parameterized as
a unit quaternion), respectively. The specific force and gravity
are denoted by sbkk ∈ R3 and gn ∈ R3, respectively and the
sampling interval is denoted by Ts. The body angular velocity
is denoted by ωbkk ∈ R3. Moreover, Rnbk is the rotation matrix
that transforms a vector in the body frame bk to the navigation
frame n. Furthermore, ⊗ denotes quaternion multiplication,
expq(·) is the operator that maps a axis-angle to a quaternion,
and expR(·) is the operator that maps a quaternion to a rotation
matrix (see [14] for details on quaternion algebra).

B. Inertial Measurement Unit Measurement Model

Acceleration and gyroscope measurements, denoted by s̃k
and ω̃k, are modeled as the true values affected by sensor bias
and noise, i.e.,

s̃k = sbkk + b
(s)
k + w

(s)
k (3a)

ω̃k = ωbkk + b
(ω)
k + w

(ω)
k , (3b)

Here b(s)k ∈ R3 and b
(ω)
k ∈ R3 denote accelerometer and gy-

roscope bias, respectively. Further, w(s)
k ∈ R3 and w(ω)

k ∈ R3

denote accelerometer and gyroscope noise, respectively. The
accelerometer and gyroscope measurement noises are modeled
as white Gaussian noises with covariance Σs = σ2

sI3 and
Σω = σ2

ωI3, respectively. Here, I3 denote an identity matrix
of dimension 3× 3.



The IMU sensor biases are modeled as random walk pro-
cesses, i.e.,

b
(s)
k+1 = b

(s)
k + wb

(s)

k (4a)

b
(ω)
k+1 = b

(ω)
k + wb

(ω)

k , (4b)

where wb
(s)

k ∈ R3 and wb
(ω)

k ∈ R3 are Gaussian white noise
with covariance matrix Σb(s) = σ2

b(s)
I3 and Σb(ω) = σ2

b(ω)I3,
respectively.

C. Magnetometer Array Measurement Model

The magnetometer sensor array measurement is denoted as

yk =

[(
y
(1)
k

)T
· · ·

(
y
(N)
k

)T]T
, (5)

where y
(i)
k ∈ R3 denotes the measurement from the ith

magnetometer in the array. Further, locally the magnetic-field
M at location r in the body coordinate frame at time k is
modeled as

Mk(r) = Φ(r)θk, (6)

where Φ(r) ∈ R3×κ is a regression matrix defined in [11]
and θ ∈ Rκ is the coefficients of the polynomial model; for a
nth order polynomial the model has κ = dim(θ) = n2 + 4n+
3 unknown parameters [12]. Thus, the magnetometer sensor
array measurement is modeled as

yk =

Φ(m
bk
1 )

...
Φ(mbk

N )

 θk + ek, (7)

where mbk
i ∈ R3 denotes the location of the ith magnetometer

in the array expressed in the body coordinate frame at time k.
Further, ek ∈ R3N denotes the measurement noise which is
assumed to be white and Gaussian distributed with covariance
matrix Σe = σ2

eI3N .

D. Polynomial model recursive updates

The polynomial model in (6) describes the local magnetic-
field in the body frame at time k. Given the change in pose

ψk =

[
∆pbkk
∆ϕk

]
, (8a)

where

∆pbkk = Rbkn

(
vnkTs +Rnbk(s

bk
k + gn)

T 2
s

2

)
, (8b)

a way to update the polynomial model is needed. To that end,
assume that Mk(r) is valid within the volume Ωr, centered
at the origin of the array at time k. Then if there exists a
location rbk+1

i ∈ R3 such that (Rbkbk+1
r
bk+1

i +∆pbkk ) ∈ Ωr, the

magnetic field at location rbk+1

i can be expressed as

Mk+1(r
bk+1

i ) = R
bk+1

bk
Mk(r

bk
i ), (9a)

where
R
bk+1

bk
=

(
exp([∆ϕk]×)

)T
. (9b)

Here [·]× is the operator that maps a vector in R3 to a skew-
symmetric matrix such that [a]× b = a× b.

Combined with (6), it leads to

Φ(r
bk+1

i )θk+1 = R
bk+1

bk
Φ(rbki )θk, (10a)

where
rbki = Rbkbk+1

r
bk+1

i +∆pbkk . (10b)

Note for a given r
bk+1

i , ψk, and θk, (10a) represents three
equations. Since θk+1 is of dimension κ, different location
vectors are need to solve the equation system with respect
to θ. For a polynomial model of order 2 or 3, κ is divisible
by 3. In these cases, M = κ/3 vectors can be used to construct
the equation systemΦ(r

bk+1

1 )
...

Φ(r
bk+1

M )


︸ ︷︷ ︸

≜A

θk+1 =


R
bk+1

bk
Φ(rbk1 )
...

R
bk+1

bk
Φ(rbkM )


︸ ︷︷ ︸

≜B(ψk)

θk. (11)

Finally, given that A is invertible, it holds that

θk+1 = A−1B(ψk)θk. (12)

Since the polynomial model only describes the magnetic-
field locally, the change in origin of the model from the body
coordinate frame at time k to k + 1 will introduce additional
model errors. To describe these errors a white noise wθk is
added to the recursions in (12). That is, with a slight abuse
of notation, the update of the polynomial coefficients given a
displacement ψk is modeled as

θk+1 = A−1B(ψk)θk + wθk, (13)

where wθk ∈ Rκ is assumed to be white and Gaussian
distributed with covariance matrix Σθ = σ2

θIκ.

E. Full state-space model

By combining the models in (2), (3), (4), (7) and (13) a
state-space model relating the IMU and magnetometer array
measurements can be found. Let the state vector xk, input
vector uk, and process noise wk be defined as

xk =



pnk
vnk
qnbkk

b
(s)
k

b
(ω)
k

θk


ũk =

[
s̃k
ω̃k

]
wk =


w

(s)
k

w
(ω)
k

wb
(s)

k

wb
(ω)

k

wθk

 , (14)

respectively. Then the state-space model becomes

xk+1 = f(xk, ũk, wk) (15a)
yk = Hxk + ek, (15b)
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Fig. 3. The flowchart of the ESKF algorithm. The filter first propagates the
nominal state and predicts measurement which is then compared with the
actual measurement. The error in prediction goes into a Kalman filter with
error state model and corrects the propagated nominal state to output the final
state estimate.

where

f(xk, ũk, wk) =


pnk+v

n
kTs+R

n
bk

(s̃k−b(s)k −w(s)
k +gn)

T2
s
2

vnk+Rn
bk

(s̃k−b(s)k −w(s)
k +gn)Ts

q
nbk
k ⊗expq

(
(ω̃k−w(ω)

k −b(ω)
k )Ts

)
b
(s)
k +wb(s)

k

b
(ω)
k +wb(ω)

k

A−1B(ψk)θk+w
θ
k

 ,
(15c)

and

H =


0 Φ(m

(bk)
1 )

...
...

0 Φ(m
(bk)
N )

 . (15d)

III. STATE ESTIMATION

The quaternion in the state-vector xk in (14) does not
belong to Euclidean space. Therefore, standard nonlinear
filter algorithms, such as the extended Kalman filter and
unscented Kalman filter, cannot be applied to the state-space
model in (15) without appropriate modifications. The error
state Kalman filter (ESKF) presented in [14] includes such
modifications and is a long-time established workhorse for
creating various sensor aided INS solutions [15]. With refer-
ence to Fig. 3, the algorithm works by propagating a nominal
state x̂k via the state-transition model in (15a) and using a
complimentary Kalman filter to estimate the errors δxk in the
nominal states. By assuming the errors in the orientation, i.e.,
the quaternion vector, to be small the fact that orientations do
not belong to Euclidean space can be neglected and a standard
Kalman filter is used. The estimated errors are then used to
correct the nominal states. Since ESKF is a standard algorithm,
only the error propagation model that is unique to the state-
space model in (15), will here be presented. For details about
the full ESKF the reader is referred to [14].

A. Nominal and error state

The nominal state x̂k, error state δxk are defined as

x̂k =



p̂nk
v̂nk
q̂nbkk

b̂
(s)
k

b̂
(ω)
k

θ̂k


and δxk =



δpnk
δvnk
ϵk

δb
(s)
k

δb
(ω)
k

δθk

 , (16)

respectively. Here, ϵk ∈ R3 denotes the perturbation between
the nominal and true quaternion. The true state and nominal
state relate to each other via

pnk = p̂nk + δpnk (17a)
vnk = v̂nk + δvnk (17b)

qnbkk = q̂nbkk ⊗
[
1
ϵk

]
(17c)

b
(s)
k = b̂

(s)
k + δb

(s)
k (17d)

b
(ω)
k = b̂

(ω)
k + δb

(ω)
k (17e)

θk = θ̂k + δθk. (17f)

B. Error State Propagation

The dynamics of all error states except θ has been derived
in [14] and are given by

δpnk+1 = δpnk + δvnkTs (18a)

δvnk+1 = δvnk − R̂nbk([s̃k − b̂
(s)
k ]×ϵk + δb

(s)
k − w

(s)
k )Ts (18b)

ϵk+1 =
(

expR(∆ϕ̂k)
)T

ϵk − δb
(ω)
k Ts + w

(ω)
k Ts (18c)

δb
(s)
k+1 = δb

(s)
k + wb

(s)

k (18d)

δb
(ω)
k+1 = δb

(ω)
k + wb

(ω)

k , (18e)

where

R̂nbk = expR(q̂
nbk
k ) (18f)

∆ϕ̂k = (ω̃k − b̂
(ω)
k )Ts. (18g)

To the first order the errors in (13) propagates according to

δθk+1 = A−1
[
B(ψk)

d
dψ

(
B(ψk)θk

)] [δθk
δψk

]
+ wθk, (19a)

where
δψk = ψk − ψ̂k. (19b)

However, instead of expressing the error development in terms
of δψk we would like to express it in terms of the orientation
error ϵk, velocity error δvnk , accelerometer bias estimation
error δb(s)k , and gyroscope bias estimation error δb(ω)k . To do
so, note that

∆pbkk = Rbkn ∆pnk

= Rbkn Ts(v
n
k + gnTs/2) + sbkk T

2
s /2.

(20a)

Thus, it holds that

∆p̂bkk = R̂bkn Ts(v̂
n
k + gnTs/2) + ŝbkk T

2
s /2, (20b)



where

sbkk = s̃k − b̂
(s)
k − δb

(s)
k − w

(s)
k (20c)

ŝbkk = s̃k − b̂
(s)
k (20d)

R̂bkn = (I3 − [ϵk]×)
−1Rbkn , (20e)

which gives that

δ∆pbkk ≈− [ϵk]×R̂
bk
n Ts(v̂

n
k + gnTs/2) + R̂bkn δv

n
kTs

=[R̂bkn Ts(v̂
n
k + gnTs/2)]×ϵk + R̂bkn δv

n
kTs.

(21)

Here second and higher order terms have been neglected.
Moreover, it holds that

δϕk = ∆ϕk −∆ϕ̂k = −(δb
(ω)
k + w

(ω)
k )Ts. (22)

Bringing it all together gives the following expression for
the polynomial model error propagation

δθk+1 = A−1
[
B(ψk) J1 J2

] (
Mδxk + Lw

(ω)
k

)
+ wθk,

(23a)
where

J1 =
d

d∆pbkk

(
B(ψk)θk

)
(23b)

J2 =
d

d∆ϕk

(
B(ψk)θk

)
, (23c)

and

M =

[
0 0 0 0 0 I3

0 R̂
bk
n Ts [R̂

bk
n Ts(v̂

n
k−gnTs/2)]× 0 0 0

0 0 0 0 −I3Ts 0

]
(23d)

L =

 0
−J2Ts

0

 . (23e)

To summarize, (18) and (23) specifies the dynamics of the
errors in the nominal states and is used in the ESKF.

IV. EVALUATION

To evaluate the performance of the proposed magnetic-field
aided INS solution a Monte Carlo simulation was conducted.

A. Simulation setup and evaluation metrics

Magnetic-field data was collected using a magnetometer
within a volume of approximately 4m3 in the room shown in
Fig. 1. A high-order dipole reference model was then fitted
to the data. The field of the resulting reference model is
shown in Fig. 4. Using the reference model, 1000 Monte Carlo
simulations where a sensor array moved along a 60 seconds
spiral trajectory through the field, were conducted. During the
spiral motion, the body frame orientation was changing at
constant rate in all three axis. The pose of the body frame
and the trajectory are shown in Fig. 5.

For comparison, during the first 20 seconds position mea-
surements were also provided, making the system a position
and magnetic-field aided INS. Then the position measurements
were removed, leaving only magnetometer array measure-
ments available for the last 40 seconds.

-1

0

1-0.5
0.5

z 
[m

]

x [m]

0

0.5

Generated magnetic-field

y [m]

0
0.5 -0.5

1

1 -1

18.7 22.9 27 31.2 35.4 39.6 43.8 48 52.2 56.4 60.5 

Magnitude [ T]

Fig. 4. Illustration of the magnetic-field used in the simulations. The field
model is based on real measurements to which a high-order dipole model has
been fitted.
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Fig. 5. The orientation of the body frame and trajectory used in the
simulations. The red dot indicates the end of the trajectory (black line) and
the blue, red, and green lines indicates the x-, y-, and z- coordinates axes of
the navigation platform.

The geometry of the simulated array was the same as for
the one shown in Fig. 2. That is, the array consisted of 30
magnetometers placed in a 6 times 5 grid with 64 mm and
55 mm spacing in the x- and y- axis directions, respectively.
The settings used in the simulation are summerized in Table I.
Furthermore, the order of polynomial model is selected as n =
2.

Using the simulated array measurements, the navigation
states were estimated by the ESKF, and the root-mean-square-
error (RMSE) of the estimates and average normalized esti-
mation error squared (ANEES) were calculated. Further, the
1σ uncertainty of the state estimates given by the filter were

calculated as σ̂(i)
k =

[√
1/1000

∑1000
j=1 P

(j)
k|k

]
i,i

, where P (j)
k|k is



TABLE I
PARAMETER SETTINGS USED IN THE SIMULATIONS

Parameter Description Value Unit
σs st.d. of accelerometer noise 0.05 m/s2

b(s) initial accelerometer bias N (0, 0.12I3) m/s2
σb(s) st.d. of accelerometer bias

noise 10−8 m/s2

σω st.d. of gyroscope noise 0.1 ◦/s
b(ω) initial gyroscope bias N (0, 0.052I3) ◦/s
σb(ω) st.d. of gyroscope bias noise 10−8 ◦/s
σe st.d. of magnetometer noise 0.01 µT
σp st.d. of position measurement

noise 0.01 m

pn0 initial position (0, 1, 0)T m
vn0 initial velocity (1, 0, 0)T m/s
qnb0
0 initial orientation (1, 0, 0, 0)T -
b
(s)
0 initial accelerometer bias esti-

mate (0, 0, 0)T m/s2

b
(ω)
0 initial gyroscope bias estimate (0, 0, 0)T ◦/s
θ0 initial coefficients estimate least square fit -to the field

the covariance matrix of the navigation states in the jth Monte
Carlo simulation, and i is the index of the state component.

B. Result and discussion

The results from the Monte Carlo simulations are shown
in Fig. 6–12. From the figures the following can be observed.
Firstly, during first 20 seconds the position error and associated
uncertainty are very small, which is expected as position mea-
surements were provided during this period. However, when
the position aiding is removed after 20 seconds the position
error grows much slower for the magnetic-field aided INS
than for the stand-alone INS. This confirms the effectiveness
of the proposed method. The reduction in the position error
growth rate is from cubic to linear in time. Secondly, the
velocity and orientation estimation error are consistent with
the uncertainty given by filter and all sensor bias errors show
a downward trend and converge in the end. Thirdly, the plot
of polynomial coefficient error also suggest that the second-
order polynomial model is sufficient to model the magnetic-
field and works well in the ESKF framework. Finally, the
calculated ANEES remains below the lower bound of 99%
interval except the transience in the beginning, indicating the
filter is conservative. One possible cause is that the covariance
matrix of process noise used to describe the random changes in
the polynomial model coefficients was not tuned well enough
to match the true changes. Currently, the process noise for
the polynomial model coefficients is assumed to be white
and covariance matrix fixed. The variance for process noise
is set to approximately (by visual inspection) the variance of
the prediction error given true coefficients at two consecutive
timesteps. In practice, model error grows along with the
displacement between two timesteps and there may exist
correlation in process noise, hence, the covariance matrix may
need to be adjusted accordingly.
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Fig. 6. Position estimation error. The red line shows the RMSE of the filter
estimate with magnetic-field aiding, the gray area shows the 1σ uncertainty
given by the filter. Furthermore, the dashed line shows the RMSE of the filter
estimate without magnetic-field aiding.
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Fig. 7. Velocity estimation error. The red line shows the RMSE of the filter
estimate and the gray area shows the 1σ uncertainty given by the filter.

V. CONCLUSION & FUTURE RESEARCH

A method to create a tightly-coupled magnetic-field aided
INS has been presented. Simulation results show that the
position error growth rate of the proposed navigation system is
significantly lower than that of the stand-alone INS. A position
error reduction from 8.51 m to 0.01 m over a 40 seconds
trajectory is seen. Hence, the proposed navigation system
solution has the potential to solve one of the key challenges
faced with current magnetic-field simultaneous localization
and mapping (SLAM) systems —- the very limited allowable
length of the exploration phase during which unvisited areas
are mapped. Our future research will be focused on devel-
oping robust magnetic-field odometry immune to non-static
disturbance as in [8] and magnetic-field SLAM methods that
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Fig. 8. Orientation estimation error. The red line shows the RMSE of the
filter estimate and the gray area shows the 1σ uncertainty given by the filter.
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Fig. 9. Accelerometer bias estimation error. The red line shows the RMSE
of the filter estimate and the gray area shows the 1σ uncertainty given by the
filter.

incorporates the proposed tightly-coupled magnetic-field aided
INS architecture.
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Fig. 11. Coefficient estimation error. The red line shows the RMSE of the filter estimate and the gray area shows the 1σ uncertainty given by the filter. The
reference values of θk were calculated by fitting the model (6) to the generated field.

Fig. 12. Average normalized estimation error squared.
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